SciELO - Scientific Electronic Library Online

 
vol.26 número5Structural Aspects Related to Lithium Intercalation and Ionic Dynamics: Frequency Response Analysis of (Sn x,Ti1-x)O2 Based Systems índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Portugaliae Electrochimica Acta

versão impressa ISSN 0872-1904

Port. Electrochim. Acta v.26 n.5 Coimbra  2008

 

Study of 'Transition State' with Applied Potential [Mn – Sulfonamides – Cephalothin] System

M.S. Parihar and F. Khan*

 

Electrochemical Laboratory, Department of Chemistry, Dr. H.S. Gour University, Sagar-4700 003, M. P. India

Received 11 September 2007; accepted 13 May 2008

 

 

Abstract

Kinetic parameters and stability constants of [Mn – sulfonamides – cephalothin] system were reported at pH = 7.30 ± 0.01 in 1.0 M NaCO4 at 25 ºC. The sulfonamides were sulfadiazine, sulfisoxazoe, sulfamethaxyzoe, sulfamethazine, sulfathiazoe, sulfacetamide and sulfaniamide as primary ligands, and cephalothin as secondary ligand. Values of transfer coefficient (α) varied from (0.41 to 0.59), showing that transition state behaves between oxidant and reductant response to applied potential and it adjusts itself in such a way that the transition state is located midway between dropping mercury electrode and solution interface. The rate constants (k) varied from 3.61 x 10-3 cm.sec.-1 to 9.93 x 10-3 cm.sec.-1, confirming that the electrode processes were quasi reversible. Small changes in potential not only affect the rate of the electrochemical reaction, but also strongly affect the rate constant. Values of stability constants (og β) varied from 1.75 to 9.13, showing that these drugs or their complexes could be used against Mn toxicity.

Keywords: electrode kinetics in [Mn – sulfonamides – cephalothin] system.

 

Full text ony in PDF format

Texto disponível em PDF

 

References

1. S. Bellu and M. Rizzotto, Quim. Nova 30(5) (2007) 1136.        [ Links ]

2. L. S. Goodman and Giman’s, The Pharmacological Basis of Therapeutics, 11th ed., The McGraw-Hill Co., New York, 2006.

3.  F. Martinez, C.M. Avila and A. Gomez, J. Braz. Chem. Soc. 14(5) (2003) 803.

4. A. Cleasby, A. Wonacott, T. Skarzynski, R.E. Hubbard, G.J. Davies, A.E. Proudfoot, A.E. Bernard, M.A. Payton, T.N. Well, Nature Struct. Biol. 3 (1996) 470.

5. A. Mastrolorenzo and C.T. Supuran, Metal Based Drug 7 (2000) 49.

6. L. Meites, Polarographic Technique, 2nd ed., Interscience Publishers, New York, 1965, p. 62.

7. P.J. Gellings, Z. Elektrochem. 66 (1962) 477; Ber. Bun. Physik. Chem. 67 (1963) 799.

8. D. Deford and D.N. Hume, J. Am. Chem. Soc. 73 (1951) 5321.

9. W.B. Schaap and D. L. McMaster, J. Am. Chem. Soc. 83 (1961) 4699.

10. R.C. Kapoor, B.S. Aggarwal, Principles of Polarography, 1st ed., Wiley Eastern Limited, New Delhi, 1991, p. 40.

11. A.E. Martell, Chemistry of Metal Chelate Compounds, 2nd ed., Prentice Hall Inc., America, 1953, p. 134.

12. F. Khan, J. Chin. Chem. Soc. 52 (2005) 569.

13. R. Tamamushi and N.Z. Tanaka, Phys. Chem. New Folge 39 (1963) 117.

14. R. Tamamushi, K. Ishibashi and N.Z. Tanaka, Phys. Chem. New Folge 35 (1962) 211.

15. P.W. Atkins, Physical Chemistry, W.H. Freeman and Co., San Francisco, 1978, p. 959.

16. F. Khan, J. Chin. Chem. Soc. 54 (2007) 673.

 

* Corresponding author. E-mail address: faridkhan58@yahoo.com

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons