SciELO - Scientific Electronic Library Online

 
vol.27 issue2Voltammetric Study and Thermodynamic Parameters of [Zn_L-Amino Acidate_Vitamin-PP] Complexes vis-à-vis Kinetics of Electrode ReactionPolarographic Analysis of Quetiapine in Pharmaceuticals author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Portugaliae Electrochimica Acta

Print version ISSN 0872-1904

Port. Electrochim. Acta vol.27 no.2 Coimbra  2009

 

Study of Dehydrated Salts: Electrolyte for Intermediate Temperature Fuel Cell

 

Kamlesh Pandey,1,* Mrigank M. Dwivedi,1 Mridula Tripathi2

 

1National Centre of Experimental Mineralogy and Petrology, University of Allahabad, Allahabad-211 002, India

2Department of Chemistry, C.M.P. Degree College, Allahabad, India

 

Received 15 September 2008; accepted 23 February 2009

 

Abstract

Fuel cells are receiving growing interest in recent years since they represent one of the most promising energy source to reduce pollutant emission. We propose some new dehydrated salts as an electrolyte in the intermediate temperature fuel cell. The proton conduction in the dehydrated salts was established by the study of DTA/TGA, infrared spectroscopic study, transference number, bulk electrical conductivity measurement and emf study. The electrical conductivity of the dehydrated salts becomes ionic and increases 100-1000 times in the hydrogen ambient with respect to vacuum.

Keywords: hydrogen-oxygen, fuel cell, proton conductor, dehydrated salt, electrochemical emf.

 

 

Full text only in PDF format

Texto disponível em PDF

 

 

References

1. K. Korsesch, G. Simader,Fuel Cell and their Applications, VCH Venhenium, 1996.

2. R.C.T. Slade, N. Singh, Solid State Ionics 46 (1991) 111-115.        [ Links ]

3. S. Chandra, Superionic Solids- Principles and Application, North- Holland, Amesterdam, 1989.

4. S. Chandra, in: S. Chandra, A.L. Laskar (Eds.) Superionic Solids and Solid Electrolytes- Recent Trends, Academic Press, New York, 1989,pp 185-197.

5. O. Nakamura, T. Kodama, I. Ogino, Y. Miyake, Chem. Lett. 1 (1979) 17-18.        [ Links ]

6. Y. Liu, J.Y. Lee, L. Houng, Journal of Power Source 129 (2004) 303-311.        [ Links ]

7. L.S. Ng and A.A. Mohamad, Journal of Power Source 163(1) (2006) 382-385.        [ Links ]

8. H. Iwahara, H. Uchida and N. Meada, Solid State Ionics 3/4 (1981) 359-362.        [ Links ]

9. H. Iwahara, H. Uchida, K. Morimoto, J. Electrochem. Soc. 137 (1990) 462-465.        [ Links ]

10. K. Pandey, M.M. Dwivedi, Science Letter 25(3&4) (2002) 99-104.        [ Links ]

11. Ph. Colomban, Proton Conductors: Solid, Membranes and Gels-Materials and Devices, Cambridge University Press, 1992.

12. K.D. Kreuer, in: B.V.R. Chaudhari et al. (Eds.), Solid State Ionics: Science and Technology, World Scientific Publication Co. 1998, pp 263-274.

13. K. Pandey, Ph. D. Thesis, B.H.U. Varanasi, 1995.

14. C. Duval, “Inorganic Thermogravimetric Analysis”, Elsevier, Publishing Co., New York (1953).

15. R.W.G. Wyckoff, Crystal Structure Vol. 3 (1960).        [ Links ]

16. J.B. Wagner Jr., C. Wagner, J. Chem. Phys. 26 (1957) 1597-1601.        [ Links ]

17. B. Ilshner, J. Chem. Phys. 28 (1958) 1109-1112.        [ Links ]

18. W. Suksamai, I.S. Metcalfe, Solid State Ionics 178 (2007) 627–634.        [ Links ]

19. Y. Nigara, K. Kawamura, T. Kawada, J. Mizusaki, M. Ishigame in: B.V.R. Chaudhari et al. (Eds.), Solid State Ionics: Science and Technology, World Scientific Publication Co., 1998, p. 287-291.

20. T. Scherban, A.S. Nowick, Solid State Ionics 35 (1989) 189-194.        [ Links ]

21. H. Iwahara, Solid State Ionics 86–88 (1996) 9-15.        [ Links ]

 

* Corresponding author. E-mail address: kp542831@gmail.com

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License