SciELO - Scientific Electronic Library Online

 
vol.27 issue2Corrosion Behaviour of Aluminium in the Presence of an Aqueous Extract of Hibiscus Rosa-sinensisCorrosion Inhibition by Prussian Blue author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Portugaliae Electrochimica Acta

Print version ISSN 0872-1904

Port. Electrochim. Acta vol.27 no.2 Coimbra  2009

 

The Electrocatalysis of Multi-walled Carbon Nanotubes (MWCNTs) for Oxygen Reduction Reaction (ORR) in Room Temperature Ionic Liquids (RTILs)

 

Keqiang Ding*

 

College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050016, P. R . China

 

Received 17 October 2008; accepted 23 February 2009

 

Abstract

Oxygen reduction reaction (ORR) was investigated on a multi-walled carbon nanotubes (MWCNTs)-modified edge plane pyrolytic graphite (EPPG) electrode using cyclic voltammetry (CV) in three kinds of room temperature ionic liquids (RTILs), i.e., 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4), 1-n-propyl-3-methylimida-zolium tetrafluoroborate (PMIBF4), and 1-n-butyl-3-methylimidazolium tetrafluoro-borate (BMIBF4). The results demonstrated that, after being modified by MWCNTs on the EPPG electrode, both the reduction peak current of oxygen and the oxidation peak current of superoxide anion were all dramatically increased, and the values of standard rate constant, κs, corresponding to ORR, were greatly enhanced. Under the same condition, in PMIBF4, MWCNTs-modified EPPG electrode exhibited the most satisfied electrocatalysis for ORR, in which standard rate constant, κs, was improved from 2.9 × 10-3 cm s-1 on a EPPG electrode, to 10.4 × 10-3 cm s-1. While in EMIBF4 and BMIBF4, after being modified by MWCNTs, the value of κs was increased from 4.3 × 10-3 to 8.3 × 10-3 and 2.3 × 10-3 to 4.2 × 10-3 cm s-1, respectively. For the catalysis of MWCNTs-modified EPPG electrode towards ORR, the enhanced surface area of electrode and the increased amount of “defect” sites on electrode were thought to be the main reasons for our obtained results.

Keywords: multi-walled carbon nanotubes (MWCNTs), room temperature ionic liquids (RTILs), oxygen reduction reaction (ORR), graphite electrode.

 

 

Full text only in PDF format

Texto disponível em PDF

 

 

References

1. T .Welton, Chem. Rev. 99 (1999) 2071.

2. R.M. Lau, F. Rantwijl, K.R. Seddon, R.A. Sheldon, Org. Lett. 2 (2000) 189.

3. M.P. Jensen, J.A. Dzielawa, P. Rickret, M.L. Dietz, J. Am. Chem. Soc. 124 (2002) 10664.

4. J.S. Lee, N.D. Quan, J.M. Hwang, J.Y. Bae, H. Kim, B.W. Cho, H.S. Kim, H. Lee, Electrochem. Commun. 8 (2006) 460.        [ Links ]

5. N.K. Beck, B. Steiger, G.G. Scherer, A.Wokaun, Fuel Cells 6 (2006) 26.         [ Links ]

6. A.Vanella, C. Di Giacomo, V. Sorrenti, A. Russo, C. Castorina, A. Campisi, M. Renis, J.R. Perez-Polo, Neurochem. Res. 18 (1993) 1337.

7. H.A. Kontos, E.P. Wei, J. Neurosurg. 64 (1986) 803.

8. Y. Che, M. Tsushima, F. Matsumoto, T. Okajima, K. Tokuda, T. Ohsaka, J. Phys. Chem. 100 (1996) 20134.        [ Links ]

9. M.S. Saha, T. Ohsaka, Electrochim. Acta 50 (2005) 4746.

10. M.M. Islam, T. Okajima, T. Ohsaka, J. Phys. Chem. 108 (2004) 19425.        [ Links ]

11. J.F. Wu, Y. Che, T. Okajima, F. Matsumoto, K. Tokuda, T. Ohsaka, Electrochim. Acta 45 (1999) 987.

12. J.F. Wu, Y. Che, T. Okajima, F. Matsumoto, K. Tokuda, T. Ohsaka, Anal. Chem. 71 (1999) 4056.        [ Links ]

13. F. Matsumoto, K. Tokuda, T. Ohsaka, Electroanalysis 8 (1996) 648.

14. M.T. Carter, C.L. Hussey, S.K.D. Strubinger, R.A. Osteryong, Inorg. Chem. 30 (1991) 1149.

15. I.M. Alnashef, M.L. Leonard, M.C. Kittle, M.A. Matthews, W. Weidner, Electrochem. Solid-State Lett. 4 (2001) D16.

16. D. Zhang, T. Okajima, F. Matsumoto, T. Ohsaka, J. Electrochem. Soc. 151 (2004) D31.

17. C.E. Banks, T.J. Davies, G.G. Wildgoose, R.G. Compton, Chem. Commun. 17 (2005) 829.

18. C.E. Banks, R.G. Compton, Anal. Sci. 21 (2005) 1263.

19. J.N. Barisci, G.G. Wallace, D.R. Macfarlane, R.H. Baughman, Electrochem. Commun. 6 (2004) 22.        [ Links ]

20. J.S. Ye, Y. Wen, W.D. Zhang, L.M. Gan, G.Q. Xu, F.S. Sheu, Electrochem. Commun. 6 (2004) 66.         [ Links ]

21. C. Hu, S. Yuan, S. Hu, Electrochim. Acta 51 (2006) 3013.

22. R.G. Evans, O.V. Klymenko, S.A. Saddoughi, C. Hardacre, R.G. Compton, J. Phys. Chem. B. 108 (2004) 7878.

23. K.Q. Ding, T. Okajima, T. Ohsaka, Electrochemistry 75 (2007) 35.

24. K.Q. Ding, Z. Jia, Q. Wang, X. He, N. Tian, R. Tong, X. Wang, J. Electroanal. Chem. 513 (2001) 67.

25. R.S. Nicholson, Anal. Chem. 37 (1965) 1351.         [ Links ]

26. R.A. Robinson, R.H. Stokes, Electrolyte Solution, 2nd ed., revised, Butterworths, London, 1959.

27. M. Matsumiya, M. Terazono, K. Tokuraku, Electrochim. Acta 51 (2006) 1178.

28. A.J. Bard, L.R. Faulkner, Electrochemical Method, 2nd ed., p. 231, John Wiley & Sons, New York, 2001.

29. F. Zhao, X. Wu, M. Wang, Y. Liu, L.Gao, S. Dong, Anal. Chem. 76 (2004) 4960.        [ Links ]

30. P.J. Britto, K.S.V. Santhanam, A. Rubio, J.A. Alonso, P.M. Ajayan, Adv. Mater. 11 (1999) 154.

31. V.H. Crespi, M.L. Cohen, A. Rubio, Phys. Rev. Lett. 79 (1997) 2093.

 

* Corresponding author. E-mail address: dkeqiang@263.net

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License