SciELO - Scientific Electronic Library Online

 
vol.27 número3Síntesis de nanopartículas de Rodio por vía electroquímica y su caracterización por Microscopía Electrónica de Transmisión (MET)Efecto de la Migración del Ión Ba2+ en la Extracción de un Catión Mayor (K+) Presente Naturalmente en un Suelo de Origen Volcánico índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Portugaliae Electrochimica Acta

versión impresa ISSN 0872-1904

Port. Electrochim. Acta v.27 n.3 Coimbra  2009

 

Medidas de Espectroscopia de Impedancia sobre membrana y membrana-receptor apoyadas, en presencia de Bisfenol A

 

Andrés Ernesto Mejía,* Chad Leidy, María T. Cortés

 

Universidad de Los Andes, Calle 25 A #4-76 apto 201, 2 432460 Colombia

 

Received 25 April 2008; accepted 15 February 2009

 

Resumen

Los efectos adversos de los disruptores endocrinos (DE) sobre la salud, crean la necesidad de generar sistemas de detección de xenoestrógenos (DE). En este proyecto desarrollamos un sistema para la detección de uno de estos xenoestrógenos, el Bisfenol A (BPA), a través de la construcción de un biosensor basado en medidas de espectroscopia de impedancia para mejorar la sensibilidad. El biosensor consta de un soporte (electrodo) y una doble capa lipídica a la que le incorporamos una proteína receptor de estrógenos. Esta idea fue inicialmente concebida por V. Granek y J. Rishpon (Detecting Endocrine-Disrupting Compounds by Fast Impedance Measurements, Environ. Sci. Technol. 36 (2002) 1574-1578). Realizamos una evaluación de la bioactividad de BPA con la membrana, a través del análisis de cambios en la impedancia en función de la concentración de BPA. Los resultados encontrados indicaron que el BPA cambia la configuración de la membrana, pero en concentraciones no fisiológicas (>1ppm). Posteriormente, con la incorporación del receptor de estrógeno sobre la membrana lipídica, desarrollamos un biosensor de mayor sensibilidad haciendo posible la detección de BPA en ppb.

Palavras clave: medidas electroquímicas en rango hormonal, biosensor, espectroscopia de impedancia, Bisfenol A, membrana, receptor, xenoestrógeno, disruptores endocrinos.

 

Impedance Spectroscopy Measurements for Gotten Membrane and Membrane-Receptor, in the Presence of Bisphenol A

Abstract

The adverse effects of endocrine disrup tors on human health have created a need for screening systems to detect xenoestrogens. In this project, we develop a system to detect one of these xenestrogens, Bisphenol A (BPA), through the development of a biosensor based on impedance measurements. The biosensor consists of a supported lipid bilayer that incorporates a protein receptor sensitive to the presence of BPA. This setup was originally proposed by V. Granek and J. Rishpon [19]; we now present an alternative method of analysis to increase sensibility. As a preliminary evaluation of bioactivity of BPA we measured the direct interaction of this xenoestrogen with the membrane by analyzing changes in the membrane impedance as a function of BPA concentration. The results indicate that BPA inserts and disrupts the membrane, but only at very high unphysiological BPA concentrations (> 1 ppm). We then developed a high sensitivity biosensor, based on the detection of the electric signal by means of impedance spectroscopy, resulting from the interaction between BPA and an estrogen receptor reconstituted in a lipid membrane. The results show that the presence of the receptor increases by several orders of magnitude the sensitivity of the system, making it possible to detect BPA at ppb.

Keywords: electrochemical measures in hormonal range, biosensor, impedance spectroscopy, Bisphenol A, membrane, receptor, xenoestrogen, endocrine disruptors.

 

Texto disponível em PDF

Full text only in PDF format

 

References

1. Nussey and Whitehead, Endocrinology, an integrated approach, Taylor and Francis 2001.

2. J.J. Amaral Mendes, The endocrine disrupters: a major medical challenge, Food and Chemical Toxicology 40 (2002) 781-788.        [ Links ]

3. A. Johnson, Endocrine active industrial chemicals: release and occurrence in the environment, Pure Appl. Chem. 75 (2003) 1895-1904.

4. F. Eertmans, W. Dhooge, S. Stuyvaert, F. Comhaire, Endocrine disruptors: effects on male fertility and screening tools for their assessment, Toxicology in Vitro 17 (2003) 515-524.

5. O. Tsutsumi, Assessment of human contamination of estrogenic endocrine-disrupting chemicals and their risk for human reproduction, The Journal of Steroid Biochemistry and Molecular Biology 93 (2005) 325-330.

6. Dianin, Zhurnal russkogo fiziko-khimicheskogo obshchestva 23 (1891) 492.

7. K.L. Howdeshell, P.H. Peterman, B.M. Judy, J.A. Taylor, C.E. Orazio, R.L. Ruhlen, F.S.V. Saal, W.V. Welshons, Environ. Health Perspect. 111(2003) 1180-1187.

8. H. Yamasaki, Y. Nagako, H. Makino, Nephron 88 (2001) 376-378.

9. S.C. Nagel, F.S.V. Saal, W.V. Welshons, Environ. Health Perspect 105 (1997) 70-76.

10. S.C. Nagel, F.S.V. Saal, W.V. Welshons, J. Steroid Biochem. Molec. Biol. 69 (1999) 343-357.

11. K.L. Howdeshell, A.K. Hotchkiss, K.A. Thayer, J.G. Vanderbergh, F.S.V Saal, Nature 401 (1999) 763-764.

12. A.J. Oosterkamp, B. Hock, M. Seifert, H. Irth, Novel monitoring strategies for xenoestrogens, Trends in Analytical Chemistry 16 (1997) 544-553.

13. X. Wang, H. Zeng, L. Zhao, J.-M. Lin, Selective determination of bisphenol A (BPA) in water by a reversible fluorescence sensor using pyrene/dimethyl [beta]-cyclodextrin complex, Analytica Chimica Acta 556 (2006) 313-318.

14. X. Ye, Z. Kuklenyik, L.L. Needham, A.M. Calafat, Automated On-Line Column-Switching HPLC-MS/MS Method with Peak Focusing for the Determination of Nine Environmental Phenols in Urine, Ana l. Chem. 77 (2005) 5407-5413.

15. J.D. Stuart, C.P. Capulong, K.D. Launer, X. Pan, Analyses of phenolic endocrine disrupting chemicals in marine samples by both gas and liquid chromatography-mass spectrometry, Journal of Chromatography A 1079 (2005) 136-145.

16. J.L. Vilchez, A. Zafra, A. Gonzalez-Casado, E. Hontoria, M. del Olmo, Determination of trace amounts of bisphenol F, bisphenol A and their diglycidyl ethers in wastewater by gas chromatography-mass spectrometry, Analytica Chimica Acta 431 (2001) 31-40.

17. S. Rodriguez-Mozaz, M.L. de Alda, D. Barcelo, Analysis of bisphenol A in natural waters by means of an optical immunosensor, Water Research 39(2005) 5071-5079.

18. M. Holger, B. Karlheinz, Determination of Endocrine-Disrupting Phenolic Compounds and Estrogens in Surface and Drinking Water by HRGC-(NCI)-MS in the Picogram per Liter Range, Environ. Sci. Technol. 35 (2001) 3201-3206.

19. V. Granek, J. Rishpon, Detecting Endocrine-Disrupting Compounds by Fast Impedance Measurements, Environ. Sci. Technol. 36 (2002) 1574-1578.

20. M.A. Méndez, M.F. Suárez, M.T. Cortés, Electrochemical impedance spectroscopy of diluted solutions of Bisphenol A, Journal of Electroanalytical Chemistry. In press (2006).

 

* Corresponding author. E-mail address: andre-me@uniandes.edu.co, andreme21@gmail.com

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons