SciELO - Scientific Electronic Library Online

 
vol.27 número3Determinación de la Temperatura de Transición de Cerámicos Piezoeléctricos Libres de Plomo, Mediante Impedancia ElectroquímicaMass Transport and Potential Studies in a Flow-through Porous Electrode Reactor: A Comparative Study of Reticulated Vitreous Carbon and Graphite Felt Used as Cathode índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Portugaliae Electrochimica Acta

versão impressa ISSN 0872-1904

Port. Electrochim. Acta v.27 n.3 Coimbra  2009

 

Electrochemical Degradation of Atrazine in Aqueous Solution at a Platinum Electrode

 

M. Mamián,1,2 W. Torres,1 F. E. Larmat,1,*

 

1Departamento de Química, Facultad de Ciencias Naturales y Exactas

Universidad del Valle, A.A. 25360, Cali-Colombia

2Departamento de Química, Universidad del Cauca, Popayán-Colombia

 

Received 25 April 2008; accepted 15 October 2008

 

Abstract

Atrazine is a highly used herbicide and it has been found in both deep and superficial waters. Its solubility in water is reduced and is relatively stable in humid environments, where it has a half-life of one hundred days. Atrazine can be degraded by oxidative photolysis or by microorganisms. It is moderately toxic in humans, animals and plants, because it can be absorbed by inhalation, ingestion or through the skin.

In this work, we study the degradation of atrazine in aqueous solution using current controlled electrolysis at a platinum electrode. The effects of pH, current magnitude and direction, and temperature, were evaluated. The atrazine decomposition was monitored during electrolysis by UV-Vis spectrophotometry; quantification of atrazine was done by GC/MS, and quantification of cyanuric acid was done by HPLC.

It was found that at 25 ºC in acid media, atrazine is degraded partially to cyanuric acid with formation of persistent intermediate compounds, but at 60 ºC atrazine is completely degraded to cyanuric acid. The TOC results indicate no electrochemical combustion and no mineralization was observed under the experimental conditions studied.

Keywords: atrazine, electrochemical degradation, cyanuric acid, TOC.

 

Full text only in PDF format

Texto disponível em PDF

 

References

1. S. Nélieu, L. Kerhoas, J. Einhorn, Degradation of atrazine into ammeline by combined ozone/hydrogen peroxide treatment in water, Environm. Sci. & Technol. 34 (2000) 430-437.        [ Links ]

2. H. Krysová, J. Jirkovský, J. Krýsa, G. Mailhot, M. Bolte, Comparative kinetic study of atrazine photodegradation in aqueous Fe(ClO4)3 solutions, Appl. Catalysis 40 (2003) 1-12.

3. E. Pelizzetti, V. Maurino, C. Minero, V. Carlin, E. Pramauro, O. Zerbinatl, M. Tosato, Photocatalytic degradation of atrazine and other s-triazine herbicides, Environm. Sci. & Technol. 24 (1990) 1559-1565.

4. K.H. Chan, W. Chu, Atrazine removal by catalytic oxidation processes with or without UV irradiation. Part II: an analysis of the reaction mechanisms using LC/ESI – tandem mass spectrometry, Appl. Catalysis B: Environmental 58 (2005) 165–174.

5. C.L. Bianchi, C. Pirola, V. Ragaini, E. Selli, Mechanism and efficiency of atrazine degradation under combined oxidation processes, Appl. Catalysis B: Environmental 64 (2006) 131–138.

6. M. Hincapié, A. Perez, G.B. Peñuela, M.I. Maldonado, O. Malato, P. Fernandez, C. Ibañez, I. Oller, W. Gernjak, S. Malato, Degradation of pesticides in water using solar advanced oxidation processes, Appl. Catalysis B: Environmental 64 (2006) 272–281.

7. T.A. McMurray, P. S.M. Dunlop, A.J. Byrne, The photocatalytic degradation of atrazine on nanoparticulate TiO2 films, J. Photochemistry and Photobiology A: Chemistry 182 (2006) 43–51.

8. G. Zhanqi, Y. Shaogui, T.N. Sun, Microwave assisted rapid and complete degradation of atrazine using TiO2 nanotube photocatalyst suspensions, J. Hazardous Materials 145 (2007) 424–430.

9. M. Lapertot, S. Ebrahimi, S. Dazio, A. Rubinelli, C. Pulgarin, Photo-Fenton and biological integrated process for degradation of a mixture of pesticides, J. Photochemistry and Photobiology A: Chemistry 186 (2007) 34–40.

10. L. Pospíŝil, R. Trsková, R. Fuoco, M. Colombini, Electrochemistry of s-triazine herbicides: reduction of atrazine and terbutylazine in aqueous solutions. J. Electroanal. Chem. 395 (1995) 189-193.

11. T. Dombek, D. Davis, J. Stine, D. Klarup, Degradation of terbutylazine (2-chloro-4-ethylamino-6-terbutylamino-1,3,5-triazine), deisopropyl atrazine (2-amino-4-chloro-6-ethylamino-1,3,5-triazine), and chlorinated dimethoxy triazine (2-chloro-4,6-dimethoxy-1,3,5-triazine) by zero-valent iron and electrochemical reduction. Environm. Pollution 129 (2004) 267-275.

12. R. Cantú, O. Evans, F. Kawahara, J. Shoemaker, A. Dufour, An HPLC method with detection, pH control, and reductive ascorbic acid for cyanuric acid analysis in water, Analytical Chemistry 72 (2000) 5820-5828.

13. M. Azenha, H. Burrows, L. Canle, R. Coimbra, M. Fernandez, M. García, M. Peiteado, J. Santaballa, Kinetic and mechanistic aspects of the direct photodegradation of atrazine, atraton, ametryn and 2-hidroxyatrazine by 254 nm light in aqueous solution, J. Phys. Org. Chem. 16 (2003) 498-503.

14. S. Chan, S. Tao, R. Dawson, Treatment of atrazine by integrating photocatalytic and biological processes, Environm. Pollution 131 (2004) 45-54.

 

* Corresponding author. E-mail address: flarmat@univalle.edu.co

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons