SciELO - Scientific Electronic Library Online

 
vol.27 número3Electrochemical Degradation of Atrazine in Aqueous Solution at a Platinum ElectrodeElectrodeposición de Películas de Polipirrol/Platino índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Portugaliae Electrochimica Acta

versión impresa ISSN 0872-1904

Port. Electrochim. Acta v.27 n.3 Coimbra  2009

 

Mass Transport and Potential Studies in a Flow-through Porous Electrode Reactor. A Comparative Study of Reticulated Vitreous Carbon and Graphite Felt Used as Cathode

 

J. L. Nava,1,* A. Recéndiz,1 L. G. González,2 G. Carreño,2 F. Martínez2

 

1 Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, C.P. 09340, México D.F., México

2Universidad de Guanajuato, Facultad de Ingeniería en Geomática e Hidráulica, Av. Juárez No. 77, CP. 36000, Guanajuato, Guanajuato, México

 

Received 25 April 2008; accepted 20 November 2008

 

Abstract

This paper deals with the use of reticulated vitreous carbon (RVC) and graphite felt (GF) as porous electrode for the removal of 20 ppm Cu(II) in 0.5 mol dm-3 Na2SO4 at pH 2 (which resembles a rinsing wastewater generated by a plating industry). The experimental mass transport characterization (kma 3Dbuc) showed that for 100 ppi (RVC), the value of the coefficient b, associated with magnitude of porous electrode, is 0.88, while for (GF) is 3.38. On the other hand, c value for 100 ppi (RVC) is 0.06, while for (GF) is 0.62, indicating that the flow pattern is a complex function of the shape of the electrode. The experimental potential drop for 100 ppi (RVC) and (GF) (1.2 cm thick), indicated the absence of hydrogen evolution. Current efficiencies for RVC and GF were function of convection, giving values comprised between 45 £ f £ 68% and 51 £ f £ 73%, respectively, and energy consumption values of 0.3 < Econs < 1.7 and 0.4 < Ec < 1.1 kWh m-3, respectively. Theoretical number of identical cells in the stack (N) necessary to the cupric depletion from 20 to 1 ppm, for 100 ppi (RVC) and (GF) were calculated.

Keywords: metal ion removal, rinsing wastewater, flow-through porous electrode reactor, mass transport characterization, potential drop.

 

Full text only in PDF format

Texto disponível em PDF

 

References

1. F.C. Walsh, Pure Appl. Chem. 73 (2001) 1819-1837.        [ Links ]

2. C.A.R. Ragnini, R.A. Di Iglia, W. Bizzo, R. Bertazzoli, Water Research 34 (2000) 3269-3276.

3. C. Ponce de León, D. Pletcher, Electrochim. Acta 41 (1996) 533–541.

4. P. Fornari, C. Abbruzzese, Hydrometallurgy 52 (1999) 209-222.

5. D.N. Bennion, J. Newman, J. Appl. Electrochem. 2 (1972) 113-122.

6. T. Doherty, J.G. Sunderland, E.P.L. Roberts, D.J. Pickett, Electrochim. Acta 41 (1996) 519-526.

7. M.S. El-Deab, M.M. Saleh, B.E. El-Anoduli, B.G. Ateya, J. Electrochem. Soc. 146 (1999) 208-213.

8. M. Matlosz, J. Newman, J. Electrochem. Soc. 133 (1986) 1850-1859.

9. M.M. Saleh, J. Phys. Chem. B 108 (2004) 13419-13426.

10. J.M. Trainham, J. Newman, J. Electrochem. Soc. 124 (1977) 1528-1540.

11. E.A. Soltan, S.A. Nosier, A.Y. Salem, I.A.S. Mansour, G.H. Sedahmed, Chem. Eng. J.91 (2003) 33-44.

12. B. Delanghe, S. Tellier, M. Astruc, Electrochim. Acta 35 (1990) 1369-1376.

13. A. Ratel, G. Lacoste, J. Appl. Electrochem. 12 (1982) 267-274.

14. R. Alkire, B. Gracon, J. Electrochem. Soc. 122 (1975) 1594-1601.

15. R. Bertazzoli, C.A. Rodrígues, E.J. Dallan, M.T. Fukunga, M.R.V. Lanza, R.R. Leme, R.C. Widner, Braz. J. Chem. Eng. 15 (1998) doi: 10.1590/S0104-66321998000400008.

16. J.L. Nava, M.T. Oropeza, C. Ponce de León, J. González-García, A.J. Frías-Ferrer, Hydrometallurgy 91 (2008) 98-103.

17. J.M. Marracino, F. Coueret, S. Langlois, Electrochim. Acta 32 (1987) 1303-1309.

18. T.Z. Fahidy, Principles of Electrochemical Reactors Analysis, Elsevier, Amsterdam, 1985.

19. G. Carreño, E. Sosa, I. González, C. Ponce de León, N. Batina, M.T. Oropeza, Electrochim. Acta 44 (1999) 2633-2643.

20. F.F. Rivera, J.L. Nava, Electrochim. Acta 52 (2007) 5868-5872.

21. G. Kreysa, C. Reynvaan, J. Appl. Electrochem. 12 (1982) 241-251.

22. J. M. Friedrich, C. Ponce-de-León, G.W. Reade, F.C. Walsh, J. Electroanal. Chem. 561 (2004) 203-217.

23. F.C. Walsh, A First Course in Electrochemical Engineering, The Electrochemical Consultancy, Romsey, 1993.

24. R.E. Sioda, Electrochim. Acta 16 (1971) 1569-1576.

25. L.H. Mustoe, A.A. Wragg, J. Appl. Electrochem. 13 (1983) 507-517.

 

* Corresponding author. E-mail address: jlnm@xanum.uam.mx

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons