SciELO - Scientific Electronic Library Online

 
vol.27 número4Monte Carlo Simulation of the Solvent Contribution to the Potential of Mean Force for the Phenol Adsorption on Au(210) ElectrodesIpomoea Involcrata as an Ecofriendly Inhibitor for Aluminium in Alkaline Medium índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Portugaliae Electrochimica Acta

versão impressa ISSN 0872-1904

Port. Electrochim. Acta v.27 n.4 Coimbra  2009

 

Modeling of Catalytic Reaction in Protein-Film Linear Scan Voltammetry at Rotating Disk Electrode

Milivoj Lovrić *

Department of Marine and Environmental Research, “Rudjer Bošković” Institute, P.O. Box 180, HR-10002 Zagreb, Hrvatska (Croatia)

 

Received 9 March 2009; accepted 21 April 2009

 

Abstract

The numerical method for the simulation of linear scan voltammetry on the rotating disk electrode is adjusted to the problem of irreversible redox reaction between the adsorbed catalyst and the dissolved reactant under transient conditions. The response consists of the wave and the maximum. The peak current depends on the scan rate in linear scan voltammetry, while the limiting current of the wave depends on the rate of rotation of the working electrode. The rate constant of catalytic reaction is determined from the kinetic current under steady-state conditions.

Keywords: electro-catalytic reaction, rotating disk electrode, chemical reaction rate constant, linear scan voltammetry, protein-film voltammetry

 

Full text only in PDF format

Texto disponível em PDF

 

References

1. F.A. Armstrong, Bioelectrochemistry of Biomacromolecules, Birkhauser, Basel, 1997.

2. A.G. Volkov, M.I. Volkova-Gugeshashvili, C.L. Brown-McGauley, A.J. Osei, Electrochim. Acta 52 (2007) 2905-2912.        [ Links ]

3. A.K. Satpati, M. Kumbhakar, S. Nath, H. Pal, J. Photochem. Photobiol. A: Chem. 200 (2008) 270-276.

4. M.F. Chaplin, C. Bucke, Enzyme Technology, Cambridge University Press, Cambridge, 1990.

5. C. Leger, S.J. Elliott, K.R. Hoke, L.J.C. Jeuken, A.K. Jones, F.A. Armstrong, Biochem. 42 (2003) 8653-8662.

6. F.A. Armstrong, H.A. Heering, J. Hirst, Chem. Soc. Rev. 26 (1997) 169-179.

7. F.A. Armstrong, G.S. Wilson, Electrochim. Acta 45 (2000) 2623-2645.

8. A. Heller, Acc. Chem. Res. 23 (1990) 128-134.

9. N.F. Hu, Pure App. Chem. 73 (2001) 1979-1991.

10. Y.H. Wu, S.S. Hu, Microchim. Acta 159 (2007) 1-17.

11. N. Oyama, K. Sato, H. Matsuda,J. Electroanal. Chem. 115 (1980) 149-155.

12. C.P. Andrieux, J.M. Dumas-Bouchiat, J.M. Saveant, J. Electroanal. Chem. 123 (1981) 171-187.

13. T. Ikeda, C.R. Leidner, R.W. Murray,J. Electroanal. Chem. 138 (1982) 343-365.

14. J.M. Saveant, E. Vianello, Electrochim. Acta 10 (1965) 905-920.

15. M. Lovrić, J. Osteryoung, J. Electroanal. Chem. 197 (1986) 63-75.

16. J.M. Saveant, E. Vianello, Electrochim. Acta 12 (1967) 629-646.

17. A.J. Bard, L. Faulkner, Electrochemical Methods, 2nd edn, Wiley, New York , 2001, pp 471-533.

18. F. Marken, A. Neudeck, A.M. Bond, in F. Scholz (ed.), Electroanalytical Methods, Springer, Berlin, 2002, pp 51-97.

19. Š. Komorsky-Lovrić, M. Lovrić, in E.P. Vargus (ed.), New Research in Electrochemistry, Nova Sci. Publ., New York, 2007, pp 1-44.

20. R.G. Compton, C.E. Banks, Understanding Voltammetry, World Sci. Publ., New Jersey, 2007, pp 266-270.

21. W.J. Albery, P.N. Bartlett, D.H. Craston, J. Electroanal. Chem. 194 (1985) 223-235.

22. J. Hirst, A. Sucheta, B.A.C. Ackrell, F.A. Armstrong, J. Am. Chem. Soc. 118 (1996) 5031-5038.

 

*Corresponding author. E-mail adress: mlovric@irb.hr

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons