SciELO - Scientific Electronic Library Online

 
vol.27 issue5Optical Properties of [all]-S,S-Dioxide Oligothiophenes author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Portugaliae Electrochimica Acta

Print version ISSN 0872-1904

Port. Electrochim. Acta vol.27 no.5 Coimbra  2009

 

Do DNA and Guanine Quench Fluorescence of Conjugated Cationic Polymers by Induced Aggregation?

Matthew L. Davies,1,2 Peter Douglas,1 Hugh D. Burrows, 2 M. Graça Miguel,2,* Alastair Douglas3

1 Chemistry Group, School of Engineering, Swansea University, Singleton Park Swansea, SA2 8PP, UK

2 Departamento de Química da Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal

3 AD Technology Consulting Limited, Swansea, SA2 7UZ, UK

 

Received 14 May 2009; accepted 21 May 2009

 

Abstract

DNA and guanine are efficient fluorescence quenchers of the cationic conjugated polymer, poly {9,9-bis[N,N-(trimethylammonium)hexyl] fluorene-co-l,4-phenylene} (CCP). Studies with CCPs, of average chain length ~6, 12 and 100 repeat units, with single strand (ss) DNA, double strand (ds) DNA, and guanine, in 25/75 acetonitrile/water (v/v) mixtures result in Stern-Volmer quenching plots that show upward curvature. Initial Stern-Volmer constants, kSV, are in the range ≈ 3-20 x 107 M-1 which is much higher than possible by diffusional encounter quenching. Aggregation studies in acetonitrile/water mixtures show that aggregation is also an effective quencher of CCP fluorescence, and we note that both aggregation and quenching by DNA or guanine is accompanied by a reduction in solution absorbance at 380 nm. Comparison of the relationship between changes in absorbance and changes in emission intensity suggest that both solvent and chemical induced fluorescence quenching are due to aggregation. We interpret the correlated changes in absorption and emission, high quenching constants, and upward curving Stern-Volmer plots as evidence that the dominant mechanism for fluorescence quenching by DNA or guanine is via induced aggregation of the polymer. The upward curvature of Stern- Volmer plots and high kSV values for DNA and guanine are indicative of “aggregate energy migration quenching” in which CCP aggregates around a DNA or guanine molecule to form an aggregate complex in which excitation energy migrates between and along the polymer chains until it is quenched at an aggregate trap.

Keywords: cationic conjugated polyelectrolytes, DNA, guanine, quenching, aggregation, energy migration.

 

Full text only in PDF format

Texto disponível em PDF

 

References

1. H.D. Burrows, V.M.M. Lobo, J. Pina, M.L. Ramos, J. Seixas de Melo, A.J.M. Valente, M.J. Tapia, S. Pradhan, and U. Scherf. Macromolecules 37 (2004) 7425-7427.

2. B. Liu, G.C. Bazan, Chem. Mater. 16 (2004) 4467-4476.        [ Links ]

3. B.S. Gaylord, A.J. Heeger, G.C. Bazan, J. Am. Chem. Soc. 125 (2003) 896-900.

4 S. Wang, B. Liu, B.S. Gaylord, G.C. Bazan, Adv. Funct. Mater. 13 (2003) 463-467.

5. L. Chen, X. Su, D. McBranch, D.J. Whitten, J. Am. Chem. Soc. 122 (2000) 9302-9303.

6. S.W. Thomas, G.D. Joly, T.M. Swager, Chem. Rev. 107 (2007) 1339-1386.

7. K.E. Achyuthan, T.S. Bergstedt, L. Chen, R.M. Jones, S. Kumaraswamy, S.A. Kushon, K.D. Ley, L. Lu, D. McBranch, H. Mukundan, F. Rininsland, X. Shi, W. Xia, D.G. Whitten, J. Mater. Chem. 15 (2005) 2648-2656.

8. H.A. Al-Attar, A.P. Monkman. Adv. Funct. Mater. 18 (2008) 2498-2509.

9. C. Chi, A. Mikhailovsky, G.C. Bazan, J. Am. Chem. Soc. 129 (2007) 11134-11145.

10. K.Y. Pu, S.Y.H. Pan, B.J. Liu, Phys. Chem. B 112 (2008) 9295-9300.

11. C.V. Hoven, A. Garcia, G.C. Bazan and T.Q. Nguyen, Adv. Mater. 20 (2008) 3793–3810.

12. R.S. Becker, J. Seixas de Melo, A.L. Macanita and F. Elisei, J. Phys. Chem. 100 (48) (1996) 18683 - 18685.

13. A.T.R. Williams, S.A. Winfield, J.N. Miller, Analyst 108 (1983) 1067-1071.

14. J.N. Miller, In Standards in Fluorescence Spectrometry, Chapman and Hall: New York, 1981; p 75.

15. K. Yoshikawa, Y. Yoshikawa and T. Kanbe, Chem. Phys. Lett. 354 (2002) 354–359.

16. M.L. Davies, H.D. Burrows, M.C. Morán, M.G. Miguel and P. Douglas, Submitted to Biomacromolecules, 2009.

17. R.C. Evans, D. Ananias, A. Douglas, P. Douglas, L.D. Carlos, J. Rocha, J. Phys. Chem. C 112 (2008) 260-268.

 

*Corresponding author.:burrows@ci.uc.pt

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License