SciELO - Scientific Electronic Library Online

 
vol.28 número6Voltammetric Comparison of the Electrochemical Oxidation of Toluene on Monolithic and Reticulated Glassy Carbon Electrodes in Aqueous MediumElectrochemical Determination of Cibacron Red FN-R at Glassy Carbon Electrode índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Portugaliae Electrochimica Acta

versão impressa ISSN 0872-1904

Port. Electrochim. Acta v.28 n.6 Coimbra  2010

 

Effects of Ultrasound on the Degradation of Pentachlorophenol by Boron-Doped Diamond Electrodes

 

Gustavo S. Garbellini,1,* Giancarlo R. Salazar-Banda,2 Luis A. Avaca1

1 São Paulo University, Institute of Chemistry of São Carlos, CP 780, 13560-970 São Carlos - SP, Brazil

2 Tiradentes University / Institute of Technology and Research, 49032-490 Aracaju - SE, Brazil

 

DOI: 10.4152/pea.201006405

 

Abstract

The beneficial effects of the ultrasound (US) like the cleaning of electrode surface and enhancement of mass transport were evaluated in association with potentiostatic electrolyses for the degradation of pentachlorophenol (PCP) at 3.0 V vs. Ag/AgCl, using a boron-doped diamond (BDD) electrode during 270 minutes. Different decay levels of the PCP spectrum bands in 220, 251 and 321 nm, respectively, were observed after application of ultrasound without electrochemical process (18.1, 17.7 and 19.8 %), silent electrolyses (29.3, 71.6 and 70.8 %), pulsed sonoelectrolysis (31.0, 75.1 and 76.3%) and sonoelectrolyses (39.2, 80.0 and 82.6 %). For silent and sonoelectrolyses processes, cleaning/reactivation of the BDD surface by acetonitrile and/or electrochemical treatment was necessary. The pulsed sonolectrolysis were carried out purposely without cleaning/reactivation of the surface. The results showed greater PCP degradation for insonated studies than those obtained for the silent electrolyses, due to the increase of mass transport, minimization of the electrode fouling and the combined generation of hydroxyl radicals by both ultrasound and the polarized BDD surface. These tools (US and BDD), especially the pulsed sonoelectrolysis, can improve the degradation of pesticides and their metabolites in the environment and enable the use of sonoelectrochemistry for wastewater remediation.

Keywords: ultrasound, diamond electrode, degradation, pesticides, sonoelectrolysis.

 

Full text only available in PDF format.

Texto completo disponível apenas em PDF.

 

References

1.      J. Barek, J. Fischer, T. Navratil, K. Peckova, B. Yosypchuk, J. Zima, Electroanalysis 19 (2007) 2003-2014. 10.1002/elan.200703918

2.      A.K. Wanekaya, W. Chen, A. Mulchandani, J. Environ. Monit. 10 (2008) 703-712. 10.1039/b806830p

3.      C.A. Martinez-Huitle, E. Brillas, Appl. Catal. B 87 (2009) 105-145. 10.1016/j.apcatb.2008.09.017

4.      C.A. Martinez-Huitle, S. Ferro, Chem. Soc. Rev. 35 (2006) 1324-1340. 10.1039/b517632h

5.      G.S. Garbellini, G.R. Salazar-Banda, L.A. Avaca, Quim. Nova 31 (2008) 123-133. 10.1590/S0100-40422008000100024

6.      C.E. Banks, R.G. Compton, Analyst 129 (2004) 678-683. 10.1039/b403356f

7.      R.G. Compton, J.C. Eklund, F. Marken, Electroanalysis 9 (1997) 509-522. 10.1002/elan.1140090702

8.      J. González-García, M.D. Esclapez, P. Bonete, Y.V. Hernández, L.G. Garretón, V. Sáez, Ultrasonics 50 (2010) 318-322. 10.1016/j.ultras.2009.09.022

9.      A.J. Saterlay, J.S. Foord, R.G. Compton, Electroanalysis 13 (2001) 1065-1070. 10.1002/1521-4109(200109)13:13<1065::AID-ELAN1065>3.0.CO;2-5

10.    G.S. Garbellini, G.R. Salazar-Banda, L.A. Avaca, J. Braz. Chem. Soc. 18 (2007) 1095-1099. 10.1590/S0103-50532007000600002.

11.    G.S. Garbellini, G.R. Salazar-Banda, L.A. Avaca, Food Chem. 116 (2009) 1029-1035. 10.1016/j.foodchem.2009.03.068

12.    K.B. Holt, C. Forryan, R.G. Compton, J.S. Foord, F. Marken, New J. Chem. 27 (2003) 698-703. 10.1039/b300994g

13.    G.H. Zhao, J.X. Gao, S.H. Shen, M.C. Liu, D.M. Li, M.F. Wu, Y.Z. Lei, J. Hazard. Mater. 172 (2009) 1076-1081. 10.1016/j.jhazmat.2009.07.113

14.    C.H. Goeting, J.S. Foord, F. Marken, R.G. Compton, Diamond Relat. Mater. 8 (1999) 824-829. 10.1016/S0925-9635(98)00278-7

15.    V. Naddeo, V. Belgiorno, D. Kassinos, D. Mantzavinos, S. Meric, Ultrason. Sonochem. 17 (2010) 179–185. 10.1016/j.ultsonch.2009.04.003

16.    http://www.epa.gov/pesticides/reregistration/REDs/pentachlorophenol_red.pdf, accessed 19 October 2010.

17.    G.S. Cooper, S. Jones, Environ. Health Persp. 116 (2008) 1001-1008. 10.1289/ehp.11081

18.    L. Codognoto, S.A.S. Machado, L.A. Avaca, J. Appl. Electrochem. 33 (2003) 951-957. 10.1023/A:1025820029412

19.    L. Codognoto, S.A.S. Machado, L.A. Avaca, Diamond Relat. Mater. 11 (2002) 1670-1675. 10.1016/S0925-9635(02)00134-6

20.    D.A. Skoog, F.J. Holler, T.A. Nieman, Principles of Instrumental Analysis, Saunders College Publishing, Orlando, 1998.

21.    G.R. Salazar-Banda, L.S. Andrade, P.A.P. Nascente, P.S. Pizani, R.C. Rocha-Filho, L.A. Avaca, Electrochim. Acta 51 (2006) 4612-4619. 10.1016/j.electacta.2005.12.039

22.    G.R. Salazar-Banda, A.E. Carvalho, L.S. Andrade, R.C. Rocha-Filho, L.A. Avaca, J. Appl. Electrochem. 40 (2010) 1817-1827. 10.1007/s10800-010-0139-1

23.    R.M. Silverstein, G.C. Bassler, T.C. Morrill, Identificação espectrométrica de compostos orgânicos, Editora Guanabara Dois S. A., Rio de Janeiro, 1979.

24.    M. Quiroz, S. Reyna, J. Sanchez, J. Solid State Electrochem. 7 (2003) 277-282. 10.1007/s10008-002-0340-1

25.    B. Marselli, J. Garcia-Gomez, P.A. Michaud, M.A. Rodrigo, C. Comninellis, J. Electrochem. Soc. 150 (2003) D79-D83. 10.1149/1.1553790

26.    A. Al Bsoul, J. Magnin, N. Commenges-Bernole, N. Gondrexon, J. Willison, C. Petrier, Ultrason. Sonochem. 17 (2010) 106-110. 10.1016/j.ultsonch.2009.04.005

27.    M. Rivera, M. Pazos, M.A. Sanroman, J. Chem. Technol. Biotechnol. 84 (2009) 1118-1124. 10.1002/jctb.2141

28.    X. Zhu, J. Ni, H. Li, Y. Jiang, X. Xing, A.G.L. Borthwick, Electrochim. Acta 55 (2010) 5569-5575. 10.1016/j.electacta.2010.04.072

29.    R.H. de Lima Leite, P. Cognet, A.M. Wilhelm, H. Delmas, Chem. Eng. Sci. 57 (2002) 767-778. 10.1016/S0009-2509(01)00433-X

30.    T.A. Enache, A.M. Chiorcea-Paquim, O. Fatibello-Filho, A.M. Oliveira-Brett, Electrochem. Commun. 11 (2009) 1342-1345. 10.1016/j.elecom.2009.04.017

31.    A. Kapalka, G. Foti, C. Comninellis, Electrochim. Acta 54 (2009) 2018-2023. 10.1016/j.electacta.2008.06.045        [ Links ]

32.    E.L. Cooper, L. Coury Jr., J. Electrochem. Soc. 145 (1998) 1994-1999. 10.1149/1.1838588

33.    K.B. Holt, J. Del Campo, J.S. Foord, R.G. Compton, F. Marken, J. Electroanal. Chem. 513 (2001) 94-99. 10.1016/S0022-0728(01)00600-3

34.    R.G. Compton, J.C. Eklund, S.D. Page, T.J. Mason, D.J. Walton, J. Appl. Electrochem. 26 (1996) 775-784. 10.1007/BF00683739

35.    C.E. Banks, R.G. Compton, ChemPhysChem 4 (2003) 169-178. 10.1002/cphc.200390027

 

Acknowledgements

The authors thank CNPq (Proc.142930/2005-9 and 304018/2009-0) and Fapesp (Proc. 06/50692–2) of Brazil for the scholarships and financial support to this work.

 

* Corresponding author. E-mail address: gustgarb@yahoo.com.br

Received 15 July 2010; accepted 9 November 2010

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons