SciELO - Scientific Electronic Library Online

 
vol.29 número1Corrosion Inhibition of Aqueous Extract of Cocos nucifera - Coconut Palm - Petiole Extract from Destructive Distillation for the Corrosion of Mild Steel in Acidic MediumPreparation and Physicochemical Characterization of Natural Phosphate and Kaolin Coatings in Stainless Steel índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Portugaliae Electrochimica Acta

versão impressa ISSN 0872-1904

Port. Electrochim. Acta v.29 n.1 Coimbra  2011

 

Optimization of the Properties of Electrodeposited Ni-YSZ Composites Using Taguchi Method and Regression Analysis

 

S.T. Aruna,* P.V.K. Srikanth, M. Jamil Ahamad, S. Latha and K.S. Rajam

Surface Engineering Division, Council of Scientific and Industrial Research-National Aerospace Laboratories, Bangalore-560017, India

 

DOI: 10.4152/pea.201101023

 

Abstract

Properties of electrodeposited Ni-composite coatings containing ceramic particles are very much dependant on the bath used, current density, duration of deposition, particle content in the bath, etc. In the present study, the influence of process parameters like the concentration of particles, current density and time of deposition on the area fraction of yttria stabilized zirconia (YSZ), the microhardness and the thickness of the electrodeposited nickel (Ni)-YSZ composite coating was analyzed by Taguchi Design method and analysis of variance (ANOVA). According to the experimental results and ANOVA, the interaction of current and time are the most significant factors influencing the thickness of the coating; interaction of concentration of particles in the electrolyte bath and current are the most significant factors influencing the microhardness; and concentration of particles in the electrolyte bath is the most significant factor affecting the area fraction of particles in the Ni matrix. Models were developed for predicting the microhardness and thickness of the composite coating and area fraction of particles incorporated in the nickel matrix. They were found to be in good agreement with the experimental results. The models were tested for experimental conditions and were found to be close to predicted values. The thickness of the deposit was mainly dependent on the current density and duration of plating. On the other hand, the microhardness of the coating and area fraction of particles present in the nickel matrix were mainly dependent on the amount of particles present in the bath.

Keywords: Taguchi method, nickel, YSZ, electrocodeposition, ANOVA, S/N ratio.

 

Full text only available in PDF format.

Texto completo disponível apenas em PDF.

 

References

1.      A. Hovestad, L.J.J. Janssen, J. Applied Electrochem. 25 (1995) 519-527. 10.1007/BF00573209

2.      V.P. Greco, Electrocomposites, AESF press, USA, 1987. pp. 7-8.

3.      H. Zhao, L. Liu, J. Zhu, Y. Tang, W. Hu, Mater. Lett. 61 (2007) 1605-1608. 10.1016/j.matlet.2006.07.178

4.      A.M. El-Sherik, U. Erb, J. Mater. Sci. 30 (1995) 5743-5749. 10.1007/BF00356715

5.      L. Benea, P.L. Bonora, A. Borello, S. Martelli, Mater. Corros. 53 (2002) 23-29. 10.1002/1521-4176(200201)53:1<23::AID-MACO23>3.0.CO;2-0

6.      P. Gyftou, M. Stroumbouli, E.A. Pavlatou, P. Asimidis, N. Spyrellis, Electrochim. Acta 50 (2005) 4544-4550. 10.1016/j.electacta.2004.10.090

7.      F. Hou, W. Wang, H. Guo, App. Surf. Sci. 252 (2006) 3812-3817. 10.1016/j.apsusc.2005.05.076

8.      A. Moller, H. Hahn, Nanostructured Mater. 12 (1999) 259-262. 10.1016/S0965-9773(99)00112-9

9.      B. Szczygiel, M. Kolodziej, Electrochim. Acta 50 (2005) 4188-4195. 10.1016/j.electacta.2005.01.040

10.    J. Li, J. Jiang, H. He, Y. Sun, J. Mater. Sci. Lett. 21 (2002) 939-941. 10.1023/A:1016073606681

11.    Y-J. Xue, J.-S. Li, W. Ma, M.-D. Duan, J. Mater. Sci. 41 (2006) 1781-1784. 10.1007/s10853-006-3947-2

12.    N.S. Qu, D. Zhu, K.C. Chan, Scripta Mater. 54 (2006) 1421-1425. 10.1016/j.scriptamat.2005.10.069

13.    S.T. Aruna, C.N. Bindu, V. Ezhil Selvi, V.K. William Grips, K.S. Rajam, Surf. Coat. Tech. 200 (2006) 6871-6880. 10.1016/j.surfcoat.2005.10.035

14.    J.B. Wachtman, Mechanical properties of ceramics, New York: Wiley; 1996. p. 173.

15.    S-L. Kuo, J. Chin. Inst. Eng. 27 (2004) 243-251. 

16.    K. Ramanathan, V.M. Periasamy, U. Natarajan, Port. Electrochim Acta 26 (2008) 361-368. 10.4152/pea.200804361         [ Links ]

17.    P. Sahoo, S.K. Pal, Tribol. Lett. 28 (2007) 191-201. 10.1007/s11249-007-9264-3

18.    W.L. Liu, S.H. Hseih, W.J. Chen, J.H. Lee, Surf. Coat. Technol. 201 (2007) 9238-9242. 10.1016/j.surfcoat.2007.04.064

19.    R.A.C. Santana, A.R.N. Campos, E.A. Medeiros, A.L.M. Oliveira, L.M.F. Silva, S. Prasad, J. Mater. Sci. 42 (2007) 9137–9144. 10.1007/s10853-007-1931-0

20.    Taguchi’s Quality Engineering Handbook. G. Taguchi, S. Chowdhury, Y. Wu, John Wiley & Sons, Inc., New York, 2005.

21.    H. Klug, L.Alexander, in “X-ray Diffraction Procedures for polycrystalline and amorphous materials”, John Wiley, New York, 1974. pp. 618, 708.

 

Acknowledgements

The authors thank Director, NAL for the encouragement and permission to publish this work.

 

* Corresponding author. E-mail address: aruna_reddy@nal.res.in

Received 27 April 2009; accepted 28 December 2010

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons