SciELO - Scientific Electronic Library Online

 
vol.6 número2Diário de bordo: Ventos alísiosComparação entre a intensidade do esforço realizada por jovens futebolistas no primeiro e no segundo tempo do jogo de Futebol índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista Portuguesa de Ciências do Desporto

versão impressa ISSN 1645-0523

Rev. Port. Cien. Desp. v.6 n.2 Porto maio 2006

 

Alterações imunológicas e antropométricas induzidas por uma ultramaratona em Kayak. Um estudo de caso.

 

J. A. Rodrigues dos Santos 1

J. Candeias 2

M.C. Magalhães 2

1 Universidade do Porto, Faculdade de Desporto, Portugal.

2 Serviço de Imunologia, Hospital de S. João, Porto, Portugal.

 

RESUMO

Replicando um estudo anterior com o mesmo canoísta veterano, foram analisados, no sangue periférico, os valores de várias células da função imune, bem como algumas medidas antropométricas, antes e um, cinco e dez dias após uma ultramaratona (UM) em Kayak. As amostras sanguíneas foram obtidas em jejum, às 9 horas da manhã e, pelo menos, mais de 12 horas após o último momento de esforço. Foram medidos o número de leucócitos e o número e percentagens de linfócitos, monócitos, neutrófilos, eosinófilos e basófilos. Por citometria de fluxo foram identificados as seguintes subséries linfocitárias (CD3+, CD4+, CD8+, CD16+/CD56+, CD19+), ratio CD4+/CD8+, CD3+aß, CD3+?d, e os marcadores de activação (CD25+, CD94+ e HLA-DR), bem como as células “naive” (CD45RA+) e “memória” (CD45RO+). As alterações mais significativas após a UM incidiram na redução das células CD4+CD45RA+ (-14.8%), CD94+ (-40%), da ratio CD4+/CD8+ (-15.7%) e no aumento das CD4+CD25+ (28%), CD8+ (19%), CD8+CD25+ (36%), CD25+ (29%). Com excepção das células totais CD25+, cujos valores se mantiveram elevados, e das células NK, em que se acentuou a depressão pós-esforço (-13.6%), ao 10º dia após esforço todos os valores de partida foram recuperados e por vezes ultrapassados. Verificou-se uma redução significativa do peso corporal a expensas da redução da percentagem da massa gorda, o que indica um balanço energético negativo no decurso da UM. A evolução dos indicadores imunológicos, neste estudo, indicia uma boa capacidade adaptativa do sujeito a este tipo de esforços. As alterações provocadas pela UM parecem ter um carácter transitório e não se exprimiram por qualquer crise infecciosa das vias respiratórias superiores em todo o tempo do estudo.

Palavras-chave: ultramaratona, canoagem, sistema imune, CD4+, CD8+, CD16+/CD56+, CD19+, HLA-DR, CD25+, CD94+, CD45RA+, CD45RO+.

 

ABSTRACT

Immunological and antropometric changes induced by an ultramarathon in kayak. A case study.

This study, replicating a former study with the same master paddler, investigated the changes on the immune system, as well as some anthropometric indicators, before, and one, five, and ten days after an ultramarathon in kayak. The blood samples were collected in fasting state, at 9 a.m., at least 12 hours after the last exertion. The number of leukocytes and the number and percent of lymphocytes, monocytes, neutrophils, eosinophils, and basophils were assessed. By flow citometry, the following lymphocytes subsets were identified and assessed: CD3+, CD4+, CD8+, CD16+/CD56+, CD19+, ratio CD4+/CD8+, CD3+aß, CD3+?d, the activation markers (CD25+, CD94+ e HLA-DR), as well as the “naive” (CD45RA+) and “memory” (CD45RO+) cells. The most significant changes after the ultramarathon indicated the decrease of CD4+CD45RA+ (-14.8%), CD94+ (-40%), CD4+/CD8+ ratio (-15.7%) and the increase of CD4+CD25+ (28%), CD8+ (19%), CD8+CD25+ (36%), CD25+ (29%). Total CD25+ cells increase verified after exertion was sustained during the recovery period. The slight depression of the NK cells verified after the ultramarathon, was more pronounced (-13.6%) at the 10th day of recovery. The other cells, at the 10th of recovery, returned or overpassed the basal values. A significant reduction of the body weight was verified supported by the concurrent reduction of the fat mass, what suggest a negative energetic balance during the ultramarathon. The evolution of the immunological indicators during the study indicated good adaptative capacity of the subject to this kind of exertion. The changes induced by the ultramarathon seem be transitory and didn’t trigger any upper respiratory tract infection during the time of exertion or recovery days.

Key-Words: ultramarathon, canoeing, immune system, CD4+, CD8+, CD16+/CD56+, CD19+, HLA-DR, CD25+, CD94+, CD45RA+, CD45RO+.

 

 

Texto completo disponível apenas em PDF.

Full text only available in PDF format.

 

 

BIBLIOGRAFIA

1. Bain, BJ; Phillips, D; Thomson, K; Richardson, D & Gabriel, I (2000). Investigation of the effect of marathon running on leucocyte counts of subjects of different ethnic origins: relevamce to the aetiology of ethnic neutropenia. British Journal of Haematology 108(3):483-487.        [ Links ]

2. Baj, Z; Kantorski, J; Majewska, E; Zeman, K; Pokoca, L; Fornalczyk, E; Tchorzewski, H; Sulowska, Z & Lewicki, R (1994). Immunological status of competitive cyclists before and after the training season. International Journal of Sports Medicine 15(6):319-324.

3. Baum, M; Klopping-Menke, K; Muller-Steinhardt, M; Liesen, H & Kirchner, H (1999). Increased concentrations of interleukin 1-beta in whole blood cultures supernatants after 12 weeks of moderate endurance exercise. European Journal of Applied Physiology 79(6):500-503.

4. Couzin, J (2004). Basic and clinical immunology meeting. An old favorite is resurrected: regulatory T cells take the stage. Science 305(5685):772.

5. Cowley, SC; Hamilton, E; Frelinger, JA; Su, J; Forman, J & Elkins, KL (2005). CD4-CD8- T cells control intracellular bacterial infections both in vitro and in vivo. The Journal of Experimental Medicine 202(2):309-319.

6. D’Souza, CD; Cooper, AM; Frank, AA; Mazzaccaro, RJ; Bloom, BR & Orme, IM (1997). An anti-inflammatory role for gamma delta T lymphocytes in acquired immunity to Mycobacterium tuberculosis. The Journal of Immunology 159 (3):1217-1221.

7. Durnin, JVG & Womersley, J (1974). Body fat assessed from total body density and its estimation from skinfold thickness. British Journal of Nutrition 32:77-97.

8. Espersen, GT; Elbaek, A; Ernst, E; Toft, E; Kaalund, S; Jersild, C & Grunnet, N (1990). Effect of physical exercise on cytokines and lymphocyte subpopulations in human peripheral blood. Acta Pathologica, Microbiologica et Immunologica Scandinavica 98:395-400.

9. Fu, SC; Qin, L; Leung, CK; Chan, BP & Chan, KM (2003). Regular moderate exercise training prevents decrease of CD4+ T-lymphocytes induced by a single bout of strenuous exercise in mice. Canadian Journal of Applied Physiology 28(3):370-381.

10. Gabriel, H & Kindermann, W (1991). Normal values of lymphocyte subpopulations in athletes. International Journal of Sports Medicine 12 (Abstract) 106.

11. Gabriel, H; Schmitt, B; Urhausen, A & Kindermann, W (1993). Increased CD45RA+CD45RO+ cells indicate activated T cells after endurance exercise. Medicine and Science in Sports and Exercise 25(12):1352-1357.

12. Gabriel, H; Schwarz, L; Born, P & Kindermann, W (1992). Differential mobilization of leucocyte and lymphocyte subpopulations into the circulation during endurance exercise. European Journal of Applied Physiology 65:529-534.

13. Gabriel, H; Urhausen, A & Kindermann, W (1991). Circulating leucocyte and lymphocyte subpopulations before and after intensive endurance exercise to exhaustion. European Journal of Applied Physiology 63(6):449-457.

14. Gabriel, H; Urhausen, A; Brechtel, L; Muller, HJ & Kindermann, W (1994). Alterations of regular and mature monocytes are distinct, and dependent of intensity and duration of exercise. European Journal of Applied Physiology 69(2):179-181.

15. Gmunder, FK; Lorenzi, G; Bechler, B; Joller, P; Muller, J; Ziegler, WH & Cogoli, A (1988). Effect of long-term physical exercise on lymphocyte reactivity: similarity to spaceflight reactions. Aviation, Space, and Environmental Medicine 59:146-151.

16. Green, RL; Kaplan, SS; Rabin, BS; Stanitski, CL & Zdziarski, U (1981). Immune function in marathon runners. Annals of Allergy 47:73-75.

17. Grose, RH; Thompson, FM & Cummins, AG (2005). Deficiency of NK and CD1d-restricted Va24+ NK T-cells in Crohn’s disease and ulcerative colitis. 3rd Annual BMRP Investigator Meeting – Abstract.

18. Horn, PL; Leeman, K; Pyne, DB & Gore, CJ (2002). Expression of CD94 and 56(bright) on natural killer lymphocytes – the influence of exercise. International Journal of Sports Medicine 23(8):595-599.

19. Joffre, O; Gorsse, N; Romagnoli, P; Hudrisier, D & van Meerwijk, JP (2004). Induction of antigen-specific tolerance to bone marrow allografts with CD4+CD25+ T lymphocytes. Blood 103(11):4216-4221.

20. Kajiura, JS; MacDougall, JD; Ernst, PB & Younlai, EV (1995). Immune response to changes in training intensity and volume in runners. Medicine and Science in Sports and Exercise 27(8):1111-1117.

21. Kapazi, ZF; Ouslander, JG; Schnelle, JF; Kutner, M & Fahey JL (2003). Effects of an exercise intervention on immunologic parameters in frail elderly nursing home residents. The Journals of Gerontology - Biological Sciences and Medical Sciences 58(7):636-643.

22. Kayashima, S; Ohno, H; Fujioka, T; Taniguchi, N & Nagata, N (1995). Leucocytosis as marker of organ damage induced by chronic strenuous physical exercise. European Journal of Applied Physiology 70:413-420.

23. Keast, D; Cameron, K & Morton, AR (1988). Exercise and the immune response. Sports Medicine 5:248-267.

24. Ladel, CH; Blum, C; Dreher, A; Reifenberg, K & Kaufmann, SH (1995). Protective role of gamma/delta T cells and alpha/beta T cells in tuberculosis. European Journal of Immunology 25(10):2877-2881.

25. LaPerriere, A; Antoni, MH; Ironson, G; Perry, A; McCabe, P; Klimas, N; Helder, L; Schneiderman, N & Fletcher, MA (1994). Effects of aerobic exercise training on lymphocyte subpopulations. International Journal of Sports Medicine Suppl 3: S127-S130.

26. Lewicki, R; Tchorzewski H; Majewska, E; Nowak, Z & Baj, Z (1988). Effect of maximal physical exercise on T-lymphocyte subpopulations and on interleukin 1 (IL 1) and interleukin 2 (IL 2) production in vitro. International Journal of Sports Medicine 9:114-117.

27. Mackinnon, LT (1992). Exercise and Immunology: Present and Future Directions. In Exercise and Immunology. Human Kinetics Publishers. Current Issues in Exercise Science Series, 85.

28. MacNeil, B; Hoffman-Goetz, L; Kendall, A; Houston, M & Arumugam, Y (1991). Lymphocyte proliferation responses after exercise in men: fitness, intensity, and duration effects. Journal of Applied Physiology 70(1):179-185.

29. McKune, AJ; Smith, LL; Semple, SJ & Wadee, AA (2005). Influence of ultra-endurance exercise on immunoglobulin isotypes and subclasses. British Journal of Sports Medicine 39(9):665-670.

30. Mertens, DJ; Rhind, S; Berkhoff, F; Dugmore, D; Shek, PN & Shephard, RJ (1996). Nutritional, immunologic and psychological responses to a 7250 km run. Journal of Sports Medicine and Physical Fitness 36(2):132-138.

31. Nieman, DC (1994). Exercise, Infection and Immunity. International Journal of Sports Medicine Suppl. 15:S131-S141.

32. Nieman, DC; Berk, LS; Simpson-Westerberg, M; Arabatzis, K; Younberg, S; Tan, AS; Lee, JW & Eby, WC (1989). Effects of long-endurance running on immune system parameters and lymphocyte function in experienced marathoners. International Journal of Sports Medicine 10:317-323.

33. Nieman, DC; Buckley, KS; Henson, DA; Warren, BJ; Suttles, J; Ahle, JC; Simandle, S; Fagoaga, OR & Nehlsen-Cannarella, SL (1995). Immune function in marathon runners versus sedentary controls. Medicine and Science in Sports and Exercise 27(7):986-992.

34. Nieman, DC; Nehlsen-Cannarella, SL; Henson, DA; Koch, AJ; Butterworth, DE; Fagoaga, OR & Utter, A (1998). Immune response to exercise training and/or energy restriction in obese women. Medicine and Science in Sports and Exercise 30(5): 679-686.

35. Pedersen, BK (1991). Influence of physical activity on the cellular immune system: mechanisms of action. International Journal of Sports Medicine Suppl.12:S23-S29.

36. Piccirillo, CA & Shevach, EM (2004). Naturally-occurring CD4+CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Seminars in Immunology 16(2):81-88.

37. Pizza, FX; Mitchell, JB; Davis, BH; Starling, RD; Holtz, RW & Bigelow, N (1995). Exercise-induced muscle damage: effect on circulating leukocyte and lymphocyte subsets. Medicine and Science in Sports and Exercise 27(3):363-370.

38. Rebelo, AN; Candeias, JR; Fraga, MM; Duarte, JA; Soares, JM; Magalhães, C & Torrinha, JA (1998). The impact of soccer training on the immune system. Are the professional soccer players immune after an intensive training season? Journal of Sports Medicine and Physical Fitness 38(3):258-261.

39. Roberts, C; Pyne, DB & Horn, PL (2004). CD94 expression and natural killer cell activity after acute exercise. Journal of Science and Medicine in Sport 7(2):237-247.

40. Rodrigues dos Santos, JA (2004). As alterações imunológicas induzidas por cargas repetidas de exercício muito prolongado podem ser indiciadoras de imunodepressão? Um estudo de caso. Revista Ludens 17 (4):27-33.

41. Rodrigues dos Santos, JA (2004). Alterações agudas induzidas por uma corrida de 50-km em alguns parâmetros hematológicos, bioquímicos e urinários em sujeitos com diferentes níveis de treino. Revista Portuguesa de Medicina Desportiva 22:11-22.

42. Roitt, I; Brostoff, J & Male, D (1989). Immunology. London: Gower Medical.

43. Scharhag, J; Meyer, T; Gabriel, HH; Schlick, B; Faude, O & Kindermann, W (2005). Does prolonged cycling of moderate intensity affect immune cell function? British Journal of Sports Medicine 39(3):171-177.

44. Shek, PN; Sabiston, BH; Buguet A & Radomski, MW (1995). Strenuous exercise and immunological changes: a multiple-time-point analysis of leukocyte subsets, CD4/CD8 ratio, immunoglobulin production and NK cell response. International Journal of Sports Medicine 16:466-474.

45. Shinkai, S; Shore, S; Shek, PN & Shephard, RJ (1992). Acute exercise and immune function. Relationship between lymphocyte activity and changes in subset counts. International Journal of Sports Medicine 13(6):452-461.

46. Shore, S; Shinkai, S; Rhind, S & Shephard, RJ (1999). Immune responses to training: how critical is training volume? Journal of Sports Medicine and Physical Fitness 39(1):1-11.

47. Siri, WE (1961). Body composition from fluid spaces and density: Analysis of methods. In Brozek J, Henschel A (eds.) Techniques for Measuring Body Composition. National Academy of Sciences, National Research Council, Washington DC, 223-244.

48. Unal, M; Erdem, S & Deniz, G (2005). The effects of chronic aerobic and anaerobic exercises in lymphocyte subgroups. Acta Physiologica Hungarica 92(2):163-171.

49. Woods, JA; Ceddia, MA; Zack, MD; Lowder, TW & LU, Q (2003). Exercise training increases the naïve to memory T cell ratio in old mice. Brain, Behavior and Immunity 17(5):384-392.

50. Woods, JA; Davis, JM; Smith, JA & Nieman, DC (1999). Exercise and cellular innate immune function. Medicine and Science in Sports and Exercise 31(1):57-66.

 

CORRESPONDÊNCIA

José Augusto Rodrigues dos Santos

Faculdade de Desporto

Universidade do Porto

Rua Dr. Plácido Costa, 91

4200-450 Porto

Portugal

jaugusto@fcdef.up.pt