SciELO - Scientific Electronic Library Online

 
vol.6 número2Comparação entre a intensidade do esforço realizada por jovens futebolistas no primeiro e no segundo tempo do jogo de FutebolExercício rosca bíceps: influência do tempo de execução e da intensidade da carga na atividade eletromiográfica de músculos lombares índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista Portuguesa de Ciências do Desporto

versão impressa ISSN 1645-0523

Rev. Port. Cien. Desp. v.6 n.2 Porto maio 2006

 

Exercício contínuo e intermitente: Efeitos do treinamento e do destreinamento sobre o peso corporal e o metabolismo muscular de ratos obesos.

Larissa Braga

Maria Mello

Fúlvia Manchado

Claudio Gobatto

Universidade Estadual Paulista, Instituto de Biociências, Departamento de Educação Física, Rio Claro, São Paulo, Brasil.

 

RESUMO

Este estudo teve como objetivo comparar os efeitos de programas de treinamento contínuo e intermitente e do destreinamento sobre a adiposidade corporal e o metabolismo muscular de ratos obesos. Foram utilizados ratos Wistar, recém-nascidos, que receberam glutamato monossódio (MSG), via subcutânea, 4mg/g peso corporal (p.c.), a cada dois dias, nos primeiros 14 dias de vida. Após o desmame, foram separados em 3 grupos: MSG-SED (sedentário), MSG-CONT (treino contínuo = natação, 45 min/dia, 5 dias/semana, com sobrecarga de 5% p.c. durante 10 semanas) e MSG-INT (treino intermitente = natação, 15 seg de atividade/15 seg de repouso, num total de 45min, 5 dias/semana, com sobrecarga de 15% do peso corporal). Como controles foram utilizados ratos que receberam solução salina (SAL) separados em 3 grupos: SAL-SED, SAL-CONT e SAL-INT. Os animais foram avaliados após 12 semanas de treinamento e 8 semanas depois de sua interrupção. Os ratos MSG mostraram maiores teores de gordura na carcaça que os SAL, comprovando a eficácia da droga em causar obesidade. Ambos os protocolos de treino foram eficazes em reduzir significativamente o ganho de peso dos ratos SAL e MSG bem como a produção muscular de lactato dos ratos MSG. Os efeitos dos dois protocolos foram transitórios, uma vez que após o destreinamento os benefícios observados foram revertidos.

Palavras-chave: obesidade, treinamento intermitente, treinamento contínuo, glutamato monossódico, rato.

 

ABSTRACT

Continuous and intermittent exercise: Effects of training and detraining on body weight and muscle metabolism in obese rats.

This study was designed to compare the effects of continuous and intermittent exercise training on body weight, carcass composition and muscle metabolism in obese rats. Obese male Wistar rats (treated with monosodium glutamate-MSG-administration, 4mg/g body weight, administered every 2 day, from birth to 14 days of age) were used. After drug administration, the rats were separated into three groups: MSG-SED (sedentary), MSG-CONT (continuous training = swimming, 45 min/day, 5 days/week, with an overload of 5% body weight during 12 weeks) and MSG-INT (intermittent training = 15 sec swimming intermitted by 15 sec rest, during 45min, 5 days/week, with an overload of 15% body weight during 12 weeks). Rats of the same age and strain, administered with saline (SAL) were used as controls and subdivided into three groups: SALT-SED, SALT-CONT and SALT-INT. The animals were evaluated after 12 weeks of training and after 8 weeks of detraining. MSG rats showed higher carcass fat content than SAL rats, indicting the effectiveness of the drug in causing obesity. Both training protocols were effective in reducing significantly body weight gain of SAL and MSG rats as well as the lactate production by the skeletal muscle of the MSG rats. The effects of the two protocols were transitory, since after the detraining period the observed benefits were reverted.

Key Words: obesity, intermittent training, continuous training, monosodium glutamate, rat.

 

Texto completo disponível apenas em PDF.

Full text only available in PDF format.

 

 

REFERÊNCIAS BIBLIOGRÁFICAS

1 Araujo PE, Mayer J (1973). Activity increase associated with obesity induced by monosodium glutamate in mice. Am J Physiol 225: 764-765.         [ Links ]

2 Ballor DL, Phoehlman ET (1992). Resting metabolic rate and coronary-heart-disease risk factors in aerobically and resistance-trained women. Am J Clin Nutr 56: 968-974.

3 Brau L (1997). Regulation of glycogen synthase and phosphorylase during recovery from high-intensity exercise in rat. Biochem J 322: 303-308.

4 Caputo FA, Ali SF, Wolff GL, Scallet AC (1996). Neonatal MSG reduces hypothalamic DA, ß-endorphin, and delays weight gain in genetically obese (Aviable yellow/a) mice. Pharmacol Biochem Behav 53: 425-432.

5 Cheng B, Karamizral O, Noales, TD, Dennis, SC, Lambert EV (1997). Time course of the effects of a high-fat diet and voluntary exercise on muscle enzyme activity in Long-Evans rats. Physiol & Behav 61: 701-705.

6 Couto GEC (1995). Efeito do exercício físico contínuo sobre o metabolismo lipídico de ratos tornados obesos pelo tratamento com glutamato monossódico (MSG). Dissertação. Universidade Federal de São Paulo. São Paulo.

7 Damaso AR (2001). Nutrição e exercício na prevenção de doenças. São Paulo: MEDSI.

8 Dela F, Ploug T, Handberg A, Petersen LN, Larsen JJ, Mikines KJ, Galbo H (1994). Physical training increases muscle GLUT4 protein and mRNA in patients with NIDDM. Diabetes 43: 862-865.

9 Djazayery A, Miller DS, Stock MJ (1979). Energy balances in obese mice. Nutr Metab 23: 357-367.

10 Dolnikoff M, Martín-Hidalgo A, Machado UF, Lima FB, Herrera E (2001). Decreased lipolysis and enhanced glycerol and glucose utilization by adipose tissue prior to development of obesity in monosodium glutamate (MSG) treated-rats. Int J Obes 25: 426-433.

11 Dubois B, Jilles KA, Hamiltom JK, Reders PA (1956). Colorimetric method for determination of sugar and related substances. Analytical Chem 28: 350-356.

12 Forbes GB (1992). Exercise and lean weight: the influence of body weight. Nutr Rev 50: 157-261.

13 Gobatto CA, Mello MAR, Souza CT, Ribeiro IA (2002). Monosodium glutamate obese rat as model for the study of exercise in obesity. Res Commun Mol Pathol Pharmacol 111: 89-102.

14 Henriksen EJ (1996). Role of glucose transport in glycogen supercompensation in reweighted rat skeletal muscle. Am J Physiol 80: 1540-1546.

15 Houmard JA, Shinebarger MH, Dolan PL, Leggett-Frazier N, Bruner RK, Mccammon MR, Israel RG, Dohm GL (1993). Exercise training increases GLUT-4 protein concentration in previously sedentary middle-age men. Am J Physiol 264: E896-E901.

16 Hughes VA, Fiatarone MA, Fielding RA, Kahn BB, Ferrara CM, Shepherd P, Fisher EC, Wolfe RR, Elahi D, Evans WJ (1993). Exercise increases muscle GLUT-4 levels and insulin action in subjects with impaired glucose tolerance. Am J Physiol 264: E855-E862.

17 Hunter GR, Weinsier RL, Bamman MM, Larson DE (1998). A role for high intensity exercise on energy balance and weight control. Int J Obes Relat Metab Disorders 6: 489-493.

18 Imbeault P, Saint-Pierre S, Alméras N, Tremblay A (1997). Acute effects of exercise on energy intake and feeding behavior. Brit J Nutr 77: 511-521.

19 Jacobs I., Esbjornsson M, Sylve C, Holm I, Jansson E (1987). Sprint training effects on muscle myoglobin, encimes, fiber types, and blood lactate. Med Sci Sports Exerc 19: 368-374.

20 James DE, Kraegen EW, Chisholm D (1984). Effect of exercise training on whole-body insulin sensitivity and responsiveness. J Appl Physiol 56: 1217-1222.

21 Jéquier E, Tappy L (1999). Regulation of body weight in humans. Physiol Rev 79: 451-480.

22 Lladó I, Pons A, Palou A (1997). Fatty acid composition of Brown adipose tissue in dietary obese rats. Biochem Mol Biol Int 43: 1129-1136.

23 Lowry OH, Rosebrough NF, Farr AL, Randal RJ (1951). Protein measurement with the folin phenol reagent. J Bio Chem 193: 265-275.

24 Machado UFE, Saito M (1995). The effect of adipose cell size on the measurement of GLUT-4 in white adipose tissue of obese mice. Br J Med and Biol Res 28: 369-376.

25 Marmo MR, Dolnikoff MS, Kettelhut IC, Matsushita DM, Hell NS, Lima FB (1994). Neonatal monosodium glutamate treatment increases epidymal adipose tissue sensitivuty to insulin there-month old rats. Br J Med Biol Res 27: 1249-1253.

26 Mello MAR, Souza CT, Braga LR, Santos JW, Ribeiro IA, Gobatto C (2001). A.Glucose tolerance and insulin action in monosodium Glutamate (MSG) obese exercise-trained rats. Physiol Chem Phys and Med NMR 33: 63-71.

27 Moss D, Ma A, Cameron DP (1985). Defective thermoregulatory thermogeneses in monosodium glutamate – induced obesity in mice. Metabolism 34: 626-630.

28 Nakai N (1996). Exercise training prevents maturation-induced decrease in insulin sensitivity. J Appl Physiol 80: 1963-1967.

29 Nicklas BJ (1997). Effects on endurance exercise on adipose tissue. Exerc Sports Rev 25: 77-103.

30 Olney JW (1969). Brain lesion, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164: 719-721.

31 Pilegaard H, Bangsbo J, Richter EA, Juel C (1994). Lactate transport studied in sarcolemmal giant vesicles from human muscle biopsies: relation to training status. J Appl Physiol 77: 1858-1862.

32 Pi-Sunyer FX, Woo R (1995). Effect of exercise on food intake in human subjects. Am J Clin Nutr 42: 983-990.

33 Powers SK, Howley ET, Cox R (1992). A differential catecholamine response during prolonged exercise and passive heating. Med Sci Sport Exerc 14: 453-459.

34 Ribeiro EB, Nascimento CMO, Andrade IS, Hirata AE, Dolnikoff MS (1997). Hormonal and metabolic adaptations to fasting in monosodium glutamate-obese rats. J Comp. Physiol B 167: 430-437.

35 Scalfani A (1984). Animal models of obesity: classification and characterization. Int J Obes 8: 491-508.

36 Silva MP, Marcondes MCG, Mello MAR (1999). Exercício aeróbio e anaeróbio: efeitos sobre a gordura sérica e tecidual de ratos alimentados com dieta hiperlipídica. Rev Bras Ativ Fís Saúde 4: 43-56.

37 Sjodin AM, Forslund AH, Westerterp KR, Andersson AB, Forslund JM, Hambraeus LM (1996). The influence of physucal activity on BMR. Med Sci Sports Exerc 28: 85-91.

38 Sjörgreen B, Nordenskjold T, Holmgren H, Wollerstrom J (1938). Beitrag zur Kentnis des le berrrhythmik. Pflügers Archiv fuer die Gesamte Physiologie des Menschen und der Tiere 240: 247.

39 Tokuyama K, Himms-Hagen H (1989). Adrenalectomy presents obesity of glutamate-treated mice. Am J Physiol 257: E139-E144.

40 Tremblay A, Fontain E, Nadeau A (1985). Contribution of post-exercise increment in glucose storage to variations in glucose induced thermogenesis in endurance athletes. Can J Physiol Pharmacol 63: 1165-1169.

41 Yoshida T, Nishioka H, Nakamura Y, Kanaysuma T, Kondo M (1985). Reduced norepinephrine turnover in brown adipose tissue of preobese mice treated with monosodium L-glutamate. Metabolism 36: 931-938.

 

 

CORRESPONDÊNCIA

Maria Alice Rostom de Mello

Avenida 24-A, 1515

Bela Vista, Departamento de Educação Física

UNESP – Rio Claro/ SP,

13506-900 Brasil

mellomar@rc.unesp.br