SciELO - Scientific Electronic Library Online

 
vol.7 issue3Acerca das reformas em curso na UniversidadePerceived exertion during swimming interval training at intensities below and above critical velocity author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista Portuguesa de Ciências do Desporto

Print version ISSN 1645-0523

Rev. Port. Cien. Desp. vol.7 no.3 Porto Dec. 2007

 

Estudo da relação entre variáveis fisiológicas, biomecânicas e o rendimento de corredores portugueses de 3000 metros

 

José A. Bragada

Tiago M. Barbosa

Departamento de Ciências do Desporto e Educação Física

Instituto Politécnico de Bragança, Portugal

 

Resumo

O objectivo do presente estudo foi investigar as relações entre o perfil fisiológico, a resposta biomecânica e o rendimento desportivo de corredores de meio-fundo portugueses. Dezoito atletas foram submetidos a um protocolo incremental de 5 patamares de 3 minutos em tapete rolante sem qualquer inclinação. Em cada patamar a velocidade foi constante e os incrementos foram de 1,45 km.h-1. Durante todo o protocolo, o consumo de oxigénio e outros parâmetros bioenergéticos foram avaliados respiração-a-respiração através de oximetria directa. Foram calculadas a potência metabólica (Pmet), o custo energético (C), a velocidade de deslocamento (v), a frequência gestual (FG) e a distância de ciclo (DC). Foi determinado em prova oficial (corrida de 3000 metros) o rendimento desportivo. Verificou-se uma relação positiva e significativa entre a Pmet e a v (R2=0,78; p<0,01). As relações entre o C e a FG ou a DC não foram significativas. A relação entre a v e a FG (R2=0,34; p<0,01) e entre a v e a DC (R2=0,87; p<0,01) foram positivas e significativas. Verificou-se uma relação significativa entre o rendimento e a Pmet a 16 km.h-1 (R2=0,23; p=0,05). Em conclusão, verifica-se uma dependência moderada do rendimento dos meio-fundistas portugueses relativamente ao seu perfil fisiológico e este de forma ténue face à resposta biomecânica.

Palavras-chave: Atletismo, rendimento, custo energético, distância de ciclo, frequência gestual, velocidade

 

 

Abstract

Study the relationships between physiological profile, biomechanical behaviour and performance of middle-distance Portuguese runners

The aim of this investigation was to study the relationships between physiological profile, biomechanical behaviour and performance of middle-distance Portuguese runners. Eighteen runners were submitted to an incremental protocol of 5 trials of 3 minutes in treadmill without inclination. At each step, velocity was constant and between steps velocity increased by 1,45 km.h-1. Through the protocol, oxygen up-take and other bioenergetical parameters were evaluated breath-by-breath with direct oximetry. It was measured the metabolic power (Pmet), the energy cost (C), the running velocity (v), the stride frequency (FG) and the stride distance (DC). It was also recorded the performance in official competition (3.000-m event). It was verified a significant and positive relationship between Pmet and v (R2=0,78; P<0,01). The relationships between C and FG or DC were no-significant. The relationships between v and FG (R2=0,34; p<0,01), as well as, between v and DC (R2=0,87; p<0,01) were statistically significant and positive. It was observed a significant relationship between performance and Pmet at 16 km.h-1 (R2=0,23; p=0,05). In conclusion, for portuguese middle-distance runners, it seems to exist a moderate dependence of performance from physiological profile and this one, from the biomechanical behaviour.

Key-words: running, performance, energy cost, gait length, gait frequency, velocity

 

Texto completo disponível apenas em PDF.

Full text only available in PDF format.

 

 

Referencias

1. Alexander McN (2003). Modelling approaches in biomechanics. Phil Trans R Soc Lond B 358: 1429-1435        [ Links ]

2. Alexander McN (2004). Bipedal animals, and their differences from humans. J Anat 204: 321-330

3. Alexander McN (2005). Models and the scaling of energy costs for locomotion. J Exp Biol 208: 1645-1652

4. Anderson T (1996). Biomechanics and running economy. Sports Med 22: 76-89

5. Barbosa TM, Vilas-Boas JP (2005). Estudo de diversos conceitos de eficiência da locomoção humana no meio aquático. Rev Port Ciên Desp 3: 337-349

6. Barbosa TM, Lima F, Portela A, Novais D, Machado L, Colaço P, Gonçalves P, Fernandes RJ, Keskinen KL, Vilas-Boas JP (2006). Relationships between energy cost, swimming velocity and speed fluctuation in competitive swimming strokes. Rev Port Ciên Desp 6(supl 2): 192-194

7. Billat V, Demarle A, Paiva M, Koralsztein J (2002). Effect of training on the physiological factors of performance in elite marathon runners (males and females). Int J Sports Med 23: 336-341

8. Bonnard M, Paihous J (1993). Intentionality in human gait control: modifying the frequency-to-amplitude relationship. J Exp Psychol: Hum Percept and Performance 19: 429-443

9. Bragada J (2003). Estudo longitudinal do rendimento e de parâmetros da carga (interna e externa) em corredores de 3000m. Tese de Doutoramento. Porto: Faculdade de Ciências do Desporto e de Educação Física da Universidade do Porto

10.Brisswalter J, Legros P (1994). Daily stability in energy cost of running, respiratory parameters and stride rate among well-trained middle distance runners. Int J Sports Med 15: 238-241

11.Cavanagh P, Williams K (1982). The effect of stride length variation on oxygen uptake during distance running. Med Sci Sports Exerc 14: 30-35

12.Cavanagh P, Kram R (1985). The efficiency of human movement - a statement of the problem. Med Sci Sports Exerc 17: 304-308

13.Cavanagh P, Kram R (1990). Stride length in distance running: velocity, body dimensions and added mass effects. In: Cavanagh P (ed.). Biomechanics of Distance Running. Champaign, Illinois: Human  Kinetics Books, 35-63

14.Colaço P (2007). Avaliação da prestação aeróbia e anaeróbia em corredores de meio-fundo e fundo. Tese de Doutoramento. Porto: Faculdade de Ciências do Desporto e de Educação Física da Universidade do Porto

15.Cunningham L (1990). Relationship of running economy, ventilatory threshold and maximal oxygen consumption to running performance in high school females. Res Q Exerc Sports 61: 369-379

16.Daniels J (1985). A physiologist’s view of running economy. Med Sci Sports Exerc 17: 1-23

17.Daniels J, Daniels N (1994). Running economy of elite male and elite female runners. Med Sci Sports Exerc 24: 369-374

18.de Luhtanen P, Komi P (1978). Mechanical factors influencing running speed. In: Asmussen E, Jorgensen K (eds.). Biomechanics VI-B. Baltimore: University Park Press, 23-29

19.di Prampero PE (1986). The energy cost of human locomotion on land and in water. Int J Sports Med 7: 55-72

20.Grant S, Craig I, Wilson J, Aitchison T (1997). The relationship between 3 km running performance and selected physiological variables. J Sports Sci 15: 403-410

21.Gutmann A, Jacobi B, Butcher T, Bertram J (2006). Constrained optimization in human running. J Exp Biol 209: 622-632

22.Hay J (2002). Cycle rate, length and speed of progression in human locomotion. J Appl Biomech 18: 257-270

23.Kramer P, Eck G (2000). Locomotor energetics and leg length in hominid bidepality. J Hum Evo 38: 651-666

24.Krahenbuhl G, Morgan D, Pangrazi R (1989). Longitudinal changes in distance-running performance of young males. Int J Sports Med 10: 92-96

25.Laurent M, Pailhous J (1986). A note on modulation of gait in man: effects of constraining stride length and frequency. Hum Mov Sci 5: 333-343

26.Minetti A, Alexander McN (1997). A theory of metabolic costs for bipedal gaits. J Theor Biol 186: 467-476

27.Mietti A (1998). The biomechanics of skipping gaits: a third locomotion? Proceedings of the Royal Society of London B265:1227-1235

28.Minetti A (2000). The three modes of terrestrial locomotion. In: Nigg B, MacIntosh B, Mester J (eds.). Biomechanics and Biology of Movement. Champaign, Illinois: Human Kinetics, 67-78.

29.Morgan D, Baldini F, Martin P, Kohrt W (1989). Ten kilometre performance and predicted velocity at VO2max among well-trained male runners. Med Sci Sports Exerc 21: 78-83

30.Morgan D, Pate R (2004). Could the correlation between maximal oxygen uptake and “economy” be spurious? Med Sci Sports Exerc 36: 345

31.Paiva M (2003). Relação entre a performance na maratona a partir da relação lactato-velocidade obtida num teste de terreno. Tese de Doutoramento. Porto: Faculdade de Ciências do Desporto e de Educação Física da Universidade do Porto.

32.Pendergast D, Zamparo P, di Prampero PE, Capelli C, Cerrettelli P, Termin A, Craig AB, Bushnell D, Paschke D, Mellendorf J (2003). Energy balance of human locomotion in water. Eur J Appl Physiol 90: 377-386

33.Proença J (1990). Potencial informativo da concentração plasmática de lactato na condução do processo de treino. Tese de Doutoramento. Lisboa: Faculdade de Motricidade Humana da Universidade Técnica de Lisboa.

34.Santos P (1995). Controlo do treino em corredores de meio fundo e fundo. Tese de Doutoramento. Porto: Faculdade de Ciências do Desporto e de Educação Física da Universidade do Porto.

35.Schmidt-Nielsen K (1972). Locomotion: energy cost of swimming, flying and running. Science 177: 222-228

36.Sparrow W, Hughes K, Russel A, Rossignol P (2000). Movement economy, preferred modes and pacing. In: Sparrow W (ed.). Energetics of Human Activity. Champaign, Illinois: Human Kinetics, 96-123

37.Wakayoshi K, D’Acquisto J, Cappaert JM, Troup JP (1995). Relationship between oxygen uptake, stroke rate and swimming velocity in competitive swimming. Int J Sports Med 16: 19-23

38.Williams K, Cavanagh P (1987). Relationship between distance running mechanics, running economy and performance. J Appl Physiol 63: 1236-1246

39.Williams K (1990). Relationships between distance running biomechanics and running economy. In: Cavanagh P (ed.). Biomechanics of Distance Running. Champaign, Illinois: Human  Kinetics Books, 271-305

40.Williams K (2000). The dynamic of running. In: Zatsiorsky V (ed.). Biomechanics in Sport. Oxford: Blackwell Science, 161-183

41.Wit B, Clecq D, Aerts P (2000). Biomechanical analysis of the stance phase during barefoot and shod running. J Biomech 33: 269-278

42.Zamparo P, Perini R, Orizio C, Sacher M, Ferretti G (1992). The energy cost of walking or running on sand. Eur J Appl Physiol Occup Physiol 65: 183-187

43.Zamparo P, Pendergast D, Mollendorf J, Termin A, Minetti A (2005). An energy balance of front crawl. Eur J Appl Physiol 94: 134-144

44.Zijlstra W, Rutgers A, Holf A, van Weerden T (1995). Voluntary and involuntary adaptation of walking to temporal and spatial constraints. Gait and Posture 3: 13-18

 

 

Correspondência

Tiago M. Barbosa

Instituto Politécnico de Bragança

Departamento de Ciências do Desporto e Educação Física

Campus de Sta. Apolónia, Apartado 1101

5301-856 Bragança, Portugal.

e-mail: barbosa@ipb.pt