SciELO - Scientific Electronic Library Online

 
vol.8 número3Caleidoscópio do Ano OlímpicoRespostas eletromiográficas induzidas pelo isolamento e pela imersão sobre os eletrodos de superfície. índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista Portuguesa de Ciências do Desporto

versão impressa ISSN 1645-0523

Rev. Port. Cien. Desp. v.8 n.3 Porto dez. 2008

 

Modelo para estimativa da força e torque muscular durante a abdução do ombro

 

Daniel Cury Ribeiro

Marcelo Gregis Estivalet

Jefferson Fagundes Loss

Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil

 

RESUMO

Identificar a força produzida pelos músculos do ombro é essencial para melhor compreender os mecanismos de lesão desta articulação. O objetivo deste estudo foi aplicar um modelo matemático para estimar a força e torque de cada músculo durante o movimento de abdução máxima no plano coronal. Um indivíduo do sexo masculino, 28 anos de idade, 1,78 metros de altura e 80 kg participou neste estudo. O modelo de otimização foi estruturado no software Matlab 7.0 ® (Mathworks, Inc.) e considerou os seguintes músculos abdutores: deltóide anterior, deltóide médio, deltóide posterior, supraespinal, infraespinal e subscapular. A comparação entre torque e força muscular estimado foi feita através do teste de Kruskal-Wallis. O teste post-hoc de Friedman foi utilizado para identificar diferenças significativas (a=0,05). O músculo deltóide médio apresentou o maior pico de torque estimado (16,7 Nm), quando comparado com os outros músculos (p<0,05). O pico de torque e a força muscular estimados para o supraespinal (6,6Nm e 371N, respectivamente) foram menores que aqueles associados às três porções do deltóide (anterior, médio e posterior). Os resultados do modelo são coerentes com os dados encontrados na literatura e provêem informações importantes acerca da força muscular produzida durante a abdução do ombro.

Palavras-chave: músculo, ombro, reabilitação

 

 

ABSTRACT

Model for muscle force and moment prediction during the shoulder abduction

To identify the muscle force produced by the shoulder muscles is essential to improve the knowledge of injuries mechanisms of the shoulder joint. The aim of the present study was to apply a model to estimate the muscle force and torque, by means of a biomechanical model, during shoulder maximal abduction on the coronal plane. One male, 28 years, 1.78 meters and 85 kg participated in the present study. The optimization model was structured with software Matlab 7.0 ® (MathWorks, Inc.). The model considered as abductor muscles the following: anterior deltoideus, medium deltoideus, posterior deltoideus, supraspinatus, infraspinatus and subscapularis muscles. The comparison between muscle estimated force and moment was performed by the Kruskal-Wallis test, together with the Friedman post hoc test (a=0.05). The medium deltoideus presented the largest estimated torque (16.7 Nm), when compared with the other muscles. The peak torque and force of supraspinatus (6,6Nm e 371N, respectively) was smaller when compared to the three portions of the deltoideus muscle. The results of the model are coherent with those found in the literature and present important information about muscle force production during shoulder abduction.

Key-words: muscle, shoulder, rehabilitation

 

 

Texto completo disponível apenas em PDF.

Full text only available in PDF format.

 

 

REFERÊNCIAS

1. Allard P, Blanchi J-P, Aïssaoui R (1995). Bases of Three-Dimensional Reconstruction. In: Three-Dimensional Analysis of Human Motion, P. Allard, I. Stokes, and J-P Blanchi, eds., Human Kinetics, Champaign, IL, 19-40.        [ Links ]

2. An KN, Kaufman KR, Chao EY-S (1995). Estimation of Muscle and Joint Forces. In: Three-dimensional analysis of human movement, Human Kinetics, Champaign, IL.

3. Ballantyne BT, O'Hare SJ, Paschall JL, Pavia-Smith MM, Pitz AM, Gillon JF, Soderberg GL (1993). Electromyographic activity of selected shoulder muscles in commonly used therapeutic exercises. Phys Ther 73(10): 668-677; discussion 677-682.

4. Bassett RW, Browne AO, Morrey BF, An KN (1990). Glenohumeral muscle force and moment mechanics in a position of shoulder instability. J Biomech 23(5): 405-415.

5. Chang YW, Hughes RE, Su FC, Itoi E, An KN (2000). Prediction of muscle force involved in shoulder internal rotation. J Shoulder Elbow Surg 9(3): 188-195.

6. Ebaugh DD, McClure PW, Karduna AR (2005). Three-dimensional scapulothoracic motion during active and passive arm elevation. Clin Biomech (Bristol, Avon) 20(7): 700-709.

7. Favre P, Sheikh R, Fucentese SF, Jacob HA (2005). An algorithm for estimation of shoulder muscle forces for clinical use. Clin Biomech (Bristol, Avon) 20(8): 822-833.

8.Graichen H, Englmeier KH, Reiser M, Eckstein F (2001). An in vivo technique for determining 3D muscular moment arms in different joint positions and during muscular activation - application to the supraspinatus. Clin Biomech (Bristol, Avon) 16(5): 389-394.

9.Graichen H, Stammberger T, Bonel H, Karl-Hans E, Reiser M, Eckstein F (2000). Glenohumeral translation during active and passive elevation of the shoulder - a 3D open-MRI study. J Biomech 33(5): 609-613.

10. Hayes K, Callanan M, Walton J, Paxinos A, Murrell GA (2002). Shoulder instability: management and rehabilitation. J Orthop Sports Phys Ther 32(10): 497-509.

11. Hughes RE, An KN (1996). Force analysis of rotator cuff muscles. Clin Orthop Relat Res (330): 75-83.

12. Hughes RE, Niebur G, Liu J, An KN (1998). Comparison of two methods for computing abduction moment arms of the rotator cuff. J Biomech, 31(2): 157-160.

13. Inman VT, Saunders JB, Abbott LC (1944). Observations of the function of the shoulder joint. Journal of Bone and Joint Surgery 26-A: 1-30.

14. Karduna AR, McClure PW, Michener LA, Sennett B (2001). Dynamic measurements of three-dimensional scapular kinematics: a validation study. J Biomech Eng 123(2): 184-190.

15. Kelkar R, Wang VM, Flatow EL, Newton PM, Ateshian GA, Bigliani LU, Pawluk RJ, Mow VC (2001). Glenohumeral mechanics: a study of articular geometry, contact, and kinematics. J Shoulder Elbow Surg 10(1): 73-84.

16. Kibler WB, McMullen J, Uhl T (2001). Shoulder Rehabilitation Strategies, Guidelines, and Practice. Orthop Clin North Am 32(3): 527-538.

17. Krug RC, Toledo JM, Castro MP, Ribeiro DC, Martinez FG, Loss JF (2005). Influência de fatores mecânicos e fisiológicos no torque de rotação interna e externa do ombro. XI Congresso Brasileiro de Biomecânica, João Pessoa.

18. Kuechle DK, Newman SR, Itoi E, Morrey BF, An KN (1997). Shoulder muscle moment arms during horizontal flexion and elevation. J Shoulder Elbow Surg 6(5): 429-439.

19. Kuechle DK, Newman SR, Itoi E, Niebur GL, Morrey BF, An KN (2000). The relevance of the moment arm of shoulder muscles with respect to axial rotation of the glenohumeral joint in four positions. Clin Biomech (Bristol, Avon) 15(5): 322-329.

20. Langenderfer JE, Carpenter JE, Johnson ME, An KN, Hughes RE (2006). A probabilistic model of glenohumeral external rotation strength for healthy normals and rotator cuff tear cases. Ann Biomed Eng 34(3): 465-476.

21. Liu J, Hughes RE, Smutz WP, Niebur G, Nan-An K (1997). Roles of deltoid and rotator cuff muscles in shoulder elevation." Clin Biomech (Bristol, Avon) 12(1): 32-38.

22. Ludewig PM, Cook TM (2000). Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther 80(3): 276-291.

23. McCann PD, Wootten ME, Kadaba MP, Bigliani LU.(1993). A kinematic and electromyographic study of shoulder rehabilitation exercises." Clin Orthop Relat Res (288): 179-188.

24. McClure PW, Bialker J, Neff N, Williams G, Karduna A (2004). Shoulder function and 3-dimensional kinematics in people with shoulder impingement syndrome before and after a 6-week exercise program. Phys Ther 84(9): 832-848.

25. McQuade KJ, Dawson J, Smidt GL (1998). Scapulothoracic muscle fatigue associated with alterations in scapulohumeral rhythm kinematics during maximum resistive shoulder elevation. J Orthop Sports Phys Ther 28(2): 74-80.

26. Michener LA, McClure PW, Karduna AR (2003). Anatomical and biomechanical mechanisms of subacromial impingement syndrome. Clin Biomech (Bristol, Avon) 18(5): 369-379.

27. Otis JC, Jiang CC, Wickiewicz TL, Peterson MG, Warren RF, Santner TJ (1994). Changes in the moment arms of the rotator cuff and deltoid muscles with abduction and rotation. J Bone Joint Surg Am 76(5): 667-676.

28. Pascoal AG (2001). Ombro e Elevação do Braço. Análise cinemática e eletromiográfica sobre a influência da carga externa e velocidade do braço no ritmo escápulo-umeral, Tese de Doutorado. Universidade Técnica de Lisboa, Lisboa.

29. Ribeiro DC, Toledo JM, Krug RC, Loss JF (2005). Modelo para estimativa da força dos músculos rotadores internos do ombro. XI Congresso Brasileiro de Biomecânica, João Pessoa.

30. Toledo JM, Krug RC, Castro MP, Ribeiro DC, Loss JF (2006). Differences in the torque and force production during the shoulder external rotation in the transverse and sagittal planes. V World Congress of Biomechanics, Munique - Germany.

31. Toledo JM, Ribeiro DC, Loss JF (2006). Critérios mecânicos para progressão de exercícios de rotação interna e externa do ombro no plano sagital. Revista Brasileira de Fisioterapia, (submetido).

32. Tytherleigh-Strong G, Hirahara A, Miniaci A (2001). Rotator cuff disease. Curr Opin Rheumatol 13(2): 135-145.

33. Veeger HE, Van der Helm FC, Van der Woude LH, Pronk GM, Rozendal RH (1991). Inertia and muscle contraction parameters for musculoskeletal modelling of the shoulder mechanism. J Biomech 24(7): 615-629.

34. Wickham JB, Brown JM (1998). Muscles within muscles: the neuromotor control of intra-muscular segments. Eur J Appl Physiol Occup Physiol 78(3): 219-225.

35. Wilk KE, Harrelson GL, Arrigo C, Chmielewski T (2000). Reabilitação do Ombro. In: Reabilitação física das lesões esportivas, JR Andrews, GL Harrelson, and KE Wilk, eds., Guanabara Koogan, Rio de Janeiro, 350-403.

36. Wilk KE, Meister K, Andrews JR (2002). Current concepts in the rehabilitation of the overhead throwing athlete. Am J Sports Med 30(1): 136-151.

37. Wilk KE, Reinold MM, Dugas JR, Andrews JR (2002). Rehabilitation following thermal-assisted capsular shrinkage of the glenohumeral joint: current concepts. J Orthop Sports Phys Ther 32(6): 268-292.

38. Zatsiorsky VM (2002). Kinetics of human motion, Human Kinetics, Champaign, IL.

 

  

CORRESPONDÊNCIA

Daniel Cury Ribeiro

R: Barão do Amazonas 793/ 401  -  Bairro Jardim Botânico

CEP: 90670-003

Porto Alegre – RS – Brasil

Telefone: 51-33301546/91438270

E-mail: daniel.cury.ribeiro@gmail.com