Palipocus: Aplicação de POCUS nos Cuidados Paliativos

Resumo:

Os cuidados paliativos são cuidados holísticos prestados a indivíduos com sofrimento intenso decorrente de doença grave. A melhoria da sobrevivência nas doenças malignas e não malignas levou ao envelhecimento da população, que vive com doenças crónicas avançadas e frequentemente recorre aos serviços de saúde. Os métodos imagiológicos não invasivos podem ter um papel importante nos cuidados paliativos modernos, no controlo sintomático e na abordagem de intercorrências agudas. A ecografia point-of-care (POCUS) trata-se de ecografia realizada à caboceria do doente, para responder a questões clínicas diri- gidas, com o objetivo de orientar a abordagem clínica. O objeti- vo da nossa revisão é contribuir para uma maior compreensão acerca da utilidade e adequação de POCUS em cuidados paliati- vos. A utilização do POCUS na prática clínica tem vindo a aumentar nos últimos anos e as suas características tornam-no uma ferramenta útil no diagnóstico e terapêutica em cuidados paliativos, nomeadamente em equipas de apoio comunitário.

Palavras-chave: Cuidados Paliativos; Ecografia; Medicina Interna; Sistemas Point of Care.

Abstract:

Palliative care is the holistic care of individuals with serious health-related suffering due to severe illness. The improving survival in malignant and non-malignant diseases results in an ageing population who live with advanced chronic diseases that commonly present to acute care settings.

With our improved ability to relieve symptoms and treat intercurrent complications, imaging can be an important aspect of modern palliative care. Point-of-care ultrasound (POCUS) is ultrasound used at the bedside to answer directed clinical questions and guide clinical care. The goals of our review are to provide greater understanding about utility and appropriateness of the use of POCUS in palliative care. The use of POCUS in the clinical setting has increased substantially in recent years, and its characteristics make it an attractive diagnostic and therapeutic adjunct in palliative care, namely in home-based care.

Keywords: Internal Medicine; Palliative Care; Point-of-Care Systems; Ultrasonography.

Introduction

Palliative care is the active holistic care of individuals across all ages with serious health-related suffering due to severe illness and especially of those near the end of life.\(^1\) Palliative care should be introduced early in the progression of chronic diseases, and it is not dichotomous with curative care.\(^2\) The majority of adults in need of palliative care have chronic diseases such as cardiovascular diseases, cancer, chronic respiratory diseases, AIDS and diabetes.\(^3\) The improving survival in malignant and non-malignant diseases results in an ageing population who live with advanced chronic diseases that commonly present to acute care settings, such as internal medicine wards or emergency departments.\(^4\) Medical assessment may be necessary managing acute decompensation, failure of planned management strategies, or in disease progression and can take place in different settings ranging from hospital services, outpatient medical clinics or home visits and decisions made in these interactions can alter the trajectory of patient care dramatically.\(^5,6\)

Palliative care does not mean “no intervention” or “no imaging”.\(^7,8\) Although the treatment of patients with terminal diseases may not be curative, such patients require management of intercurrent conditions with big impact in their quality of life.\(^7\) With improved ability to relief symptoms and treat complications, to use imaging can be an important
aspect of modern palliative care. However, the decision to pursue imaging in the palliative care setting is based on
careful considerations with particular emphasis on avoiding futility of care and keeping in mind balance between benefit
and harm.8

Point-of-care ultrasound (POCUS) is ultrasound (US) used at the bedside by the provider to answer directed clini-
cal questions and guide clinical care.9 The use of POCUS in the clinical setting (hospitalization, outpatient visit, or home
visit) has increased substantially in recent years, mainly be-
cause of the design of increasingly compact, high-quality,
and more economical equipment.10 While POCUS first gai-
ned popularity in emergency medicine, its application is ra-
pidly expanding in the field of internal medicine,11 POCUS
is being integrated into internal medicine as an adjunct to
the traditional physical examination, as it has been shown
to improve overall physical examination skills when used
in parallel to traditional methods, increasing diagnostic ac-
curacy.12 Internal medicine residency training programs recently
began to incorporate POCUS in their curricula.13 The perform-
ance characteristics of POCUS make it an attractive diag-
nostic adjunct in acute palliative care.6

The goals of our narrative review are to provide greater
understanding about utility and appropriateness of the use
of POCUS in palliative care, and to encourage discussion of
other potential realistic applications within this evolving field.

1. BENEFITS OF POCUS IN A PALLIATIVE CARE SETTING

The use of POCUS in palliative care patients, when ap-
propriate, can be beneficial in many aspects:

- Non-invasive exam, with real time diagnostic efficacy
 and low risk of discomfort14;
- It can be used outside of inpatient settings, making
 point of care imaging available for home visits, hospice
 or community nursing facilities5;
- It is performed at bedside with the security of having
 the exam done by a practitioner known and trusted by
 the patient15;
- For inpatients it can smooth the ‘patient journey’ by
 limiting the number of interdepartmental visits16;
- It avoids transfers and repositioning required for other
 imaging exams, of great importance in a palliative po-
 pulation, avoiding precipitating symptoms such as
 pain, nausea, or fatigue6;
- In the emergency setting it contributes to reducing
 lengths of stay, with patients discharged home sooner,
 particularly valuable for patients who may prefer to limit
 inpatient stays and maximize time at home towards the
 end of life17;
- In home visits it allows the performance of diagnosis
 and interventional procedures more safely and effecti-
 vely, avoiding unnecessary transfers to the hospital18;
- POCUS brings the physician back to the bedside,

increasing patient satisfaction and shared diagnostic
understanding,9
- It allows expedite timely symptomatic relief6;
- It provides useful information to assist discussions
 about diagnosis and prognosis.19

2. APPLICATIONS OF POCUS IN PALLIATIVE CARE PA-
TIENTS:

POCUS can conceptually be used both for diagnosis
and guided procedures. POCUS has been shown to im-
prove diagnostic accuracy and decrease time to diagnosis.
Procedural POCUS improves patient safety and is now stan-
ard of care for many procedures.9

US imaging can be useful in the palliative care setting
in a wide range of specific applications including, but not
limited to:

2.1. Differentiating dyspnea

Dyspnea, an ailment which is defined as a subjective ina-
ibility to breathe comfortably, is one of the most common
primary complaints among palliative patients.15 It causes
a heavy burden on patients and their families, and it becomes
more common and severe in the final stage of progressive
diseases, leading to emergency department visits and
hospitalizations, restrictions in quality of life and increase in
anxiety and fear.16

Dyspnea in the palliative care setting is often multifactori-
al and can have a large variety of possible causes, making
it challenging to differentiate acute dyspnea rapidly and ac-
curately. Many underling disease states and acute illnesses
cause shortness of breath, including pneumonia, decom-
pensated heart failure, exacerbation of chronic obstructive
pulmonary disease, pulmonary embolism, pneumothorax,
atelectasis, and malignant effusions. Management tends to
be symptomatic, particularly in those for whom comfort is
the most important goal, however these patients often have
acute needs that require medical interventions contributing
for optimal symptom control.16

There has been growing evidence supporting the use of
lung US as a diagnostic tool to help differentiate the various
causes of dyspnea, leading to early identification of the pre-
senting complaint and treatment.18 In a focused lung exami-
nation, the pleural interface is examined in multiple locations
examining specific changes to the pleura (subpleural con-
solidations, pleural thickening, or specific pleural artefacts),
pleural space (pleural effusion) or absence of typical pleura
motion (pneumothorax). Central localized malignant proces-
ses require complementary imaging strategies.6

Lung US can be of great worth to the physician’s diag-
nostic armamentarium and thanks to its portability, the cause
of dyspnea can be often determined during a home visit,
which makes unnecessary to carry out diagnostic proce-
dures at the hospital.19 This rapid, repeatable, non-ionizing
and low-cost examination causes minimal discomfort to the patient, it is easy to learn, and, in most cases, it can be performed within 3 to 4 minutes. Most importantly, lung US can assist in making clinical decisions in real time at the bedside providing additional value to provide prompt relief for dyspneic patients.22

2.2. Differentiating low or absent urinary output

POCUS can be extremely useful in palliative care as a fast and non-invasive technique to evaluate patients with low or absent urinary output and/or acute kidney injury (AKI). A low or absent urinary output can be caused by low urinary tract obstruction (post-renal AKI) or decreased kidney function with resulting decrease in urine production (pre-renal or renal AKI). Evaluation of urinary tract obstruction and/or AKI with US encompasses the observation of both kidneys (primarily for exclusion of hydronephrosis) as well as the bladder (to evaluate urine volume, bladder distension, gross lesions or clots).

When evaluating for AKI, or when a patient complains about lumbar, flank or inguinal pain, a kidney US is essentially useful to exclude urinary tract obstruction, indirectly manifesting as hydronephrosis. Ureteric obstruction can be caused by external compression (lymph node enlargement, retroperitoneal or pelvic tumors) or internal blockage (nephrolithiasis, urethral tumor). The use of bedside US allows the clinician to readily acknowledge hydronephrosis and prompt multidisciplinary discussion about treatment including risks and benefits of relieving the ureteric obstruction through a procedure (percutaneous nephrostomy or ureteric stenting).23 This can result in better pain management and reduce symptoms related to kidney failure, although these benefits need to be weighed against possible complications of these procedures and the patient’s expectations, as well as prognosis.24

A bedside bladder US can accurately estimate bladder volume, flow, and quickly diagnose urinary retention.25 Urinary retention (organic or functional obstruction of the lower urinary tract) is relatively frequent in the palliative patient.26 It may be caused by a blocking mass or clot in or near the bladder outlet, spinal cord injury by a compressing mass, such as a metastatic lesion, or it may be an adverse side effect from certain drugs, such as opioids, anticholinergic or antidepressant drugs.27,28 This has important clinical implications, especially in palliative care, allowing urinary catheterization only when there is certain therapeutic impact and predictable symptomatic relief, while avoiding unnecessary catheterization in patients with non-obstructive oliguria (Box 1).

A bladder US can also be used to assess urinary catheter position and function when a decreased urine output is noted in a catheterized patient. If the catheter is in place and there is only a thin sheet of urine around the catheter’s balloon, then the decreased urine output is less likely resulting from obstruction or catheter malfunction and more likely resulting from decreased urine production.

Figura 1: POCUS image showing urinary bladder distension.
Box 1

A 75-year-old man, with terminal lung cancer, sent from nursing home for fever, agitation, and low urinary output. A urinary tract infection was diagnosed 2 days before. At physical examination it was not clear if there was an abdominal mass on palpation. POCUS showed a big urinary bladder distension (Fig. 1). After bladder catheterization (drained 2500 of cloudy urine) the patient became progressively more comfortable (Fig. 2). POCUS as an extension of physical exam can be useful in symptom control and contribute to relief suffering.

2.3. Differentiating Gastrointestinal symptoms

Gastrointestinal symptoms, like abdominal pain, constipation, nausea and vomiting plague a large proportion of patients in the palliative phase of disease. These symptoms can arise either from the disease itself or as side effects of treatment.\(^7\) Bedside US is a non-invasive exam, suitable for the correct diagnosis of patients presenting with abdominal pain, helping to define the underlying cause, such as ascites, intra-abdominal metastasis, urinary obstruction, biliary pathology or abscesses and bowel obstruction.\(^8\)

Regardless of the etiology, up to 90% of patients with terminal illness report constipation. US helps to differentiate simple constipation from obstruction. Bowel obstruction may present as constipation, but these patients will normally have additional signs or symptoms such as vomiting, abdominal pain or distension, or peritoneal signs that point toward the diagnosis.\(^2\) In a malignant population, especially in the setting of gastrointestinal tract tumors, malignant bowel obstructions are common and produce significant morbidity and mortality. Utilizing imaging to assist in ruling out this diagnosis may allow for directed therapy for better symptom control and prognostics.\(^6\) The diagnostic performance of POCUS in mixed etiologies is favorable in comparison to conventional radiography studies when performed by the treating clinicians, making it a good option for first line exam, with no need for moving patients from their current setting or contrast administration. Typical sonographic findings include dilated small bowel loops, “to and fro” peristalsis with obstruction, the absence of peristalsis in paralytic ileus, or a collapsed colonic lumen.\(^5\) It is recommended that patients should undergo further diagnostic imaging examinations when large gas bubbles, often arisen due to perforation and obstruction of the bowel, are observed, as they reduce the image quality and difficult its interpretation.\(^26\)

2.4. Deep venous thrombosis

Deep vein thrombosis (DVT) is one of the most common preventable causes of in-hospital death and people with cancer are at particular risk.\(^8\) DVT usually presents with lower limb oedema, pain and warmth and can lead to pulmonary embolism with more severe symptoms.\(^9\)

Bedside compression ultrasonography can confirm or exclude the existence of DVT, with the advantage of being
easy to access and well tolerated by patients. Although doppler US is the first choice for the diagnosis, bedside compression ultrasonography has high sensitivity and specificity in diagnosing DVT. An extended compression ultrasound (ECUS) protocol can be applied to patients suspected of having DVT, starting above the inguinal ligament through to the popliteal vein and to the calf veins confluence. This will allow physicians to adequately perform fast differential diagnosis and subsequently decide management in a timely manner.

In the setting of palliative care the decision to start prophylactic treatment or even to treat a newly diagnosed DVT is a matter of intense debate. Life expectancy, performance status, haemorrhagic risk and patient motivation are key elements in those choices. At the end of life, venous thromboembolism is considered of clinical relevance only if it confers a patient-reported symptom burden or contributes to distressing symptoms.

The use of bedside compression ultrasonography for the diagnosis of DVT in palliative care has the potential to reduce lengthy in-hospital stays, mainly at the emergency department. Moreover, if performed at palliative care units or hospices, it can significantly reduce the need of hospital admission, diminishing stress imposed to the patient and caregivers (Box 2).

Box 2

A 72-year-old man with locally advanced prostate cancer, partially autonomous, calls his internal medicine doctor with complaints of swelling and pain of the right leg for one week. The doctor assists the patient at home, finds an asymmetrical swelling of the inferior limbs, and a POCUS of the right lower leg shows a clot at the popliteal vein (Fig. 3 and 4). The patient was started on an oral anticoagulant. Two months after the episode the patient was re-evaluated with US and there was resolution of the thrombosis.

2.5. US-guided palliative interventions

Paracentesis

The symptomatic management of ascites is a challenge faced by those who provide palliative care. As the fluid accumulates the patient can develop shortness of breath, nausea, loss of appetite, swelling legs and painful abdominal distension that can be worsened by movements and transfers leading to escalation of analgesics, although sometimes only suboptimal relief of discomfort is achieved with those measures. The use of paracentesis in palliation, decompressing a tense ascites-filled abdomen, can reduce distressing physical symptoms and serve as an adjunct to therapy, avoiding other measures like escalation of opioids. It should be done specifically with goal-directed intent to promote comfort and improve quality of life and not intent to cure.

US can be used for diagnosis, to determine with certainty whether fluid is present, allowing safer decision-making and avoiding unnecessary procedures in situations where fluid is not significant and paracentesis would not produce

Figura 3: POCUS without compression showing popliteal thrombus.
benefit.13,33 It is also useful to guide the technique, especially in situations of complex ascites: loculated or failure in previous drainage attempts.11 Patients with ascites often spend unnecessary time in the hospital due to delays in investigation and procedures - bedside US can shorten in-hospital stay and can also be performed at home with a portable bedside US with satisfaction of both patients and their families, and decreases costs for the health system.10,13,33

Thoracocentesis

Malignant pleural effusions are a common cause of dyspnea and discomfort in patients with malignant disease under a palliative care strategy.36 Conventionally, clinical signs and chest radiography have been used to diagnose and evaluate the need for invasive intervention to manage these pleural effusions. When thoracentesis is appropriate, US guidance has been demonstrating superiority over the conventional approach, allowing to determine the most appropriate site for catheter insertion, which becomes especially important since many malignant pleural effusions are not free. This way US contributes to the reduction in post-interventional complications like pneumothorax and a reduced rate of “dry taps” in pleural effusions that obliterate less than half of the hemidiaphragm.8

Also, US can be used in for treatment with percutaneous placement of small pigtail catheters that can be as effective as surgically placed chest tubes, which can be done in the community setting, and in the resolution of some catheter-associated common problems like obstruction by debris, blood clots, and tumor fragments frequently present in malignant effusions.36

Analgesic procedures

The use of interventional techniques to manage pain in acute care has become common and represent valuable adjuncts to the WHO Analgesic ladder and these skills are also transferable to the treatment of cancer related pain.5 The majority of peripheral nerve blocks for pain management over single dermatomes can be performed under USG guidance - these are more accurate, generally do not need special positioning and are more comfortable to patients and safe even when performed at bedside. US guidance reduces number of unsuccessful blocks as well as complications.36 Truncal blocks can also be performed under US guidance and are effective in treating cancer related pain. However, truncal blocks are not as simple to perform and require a long learning curve.36 Neurolytic celiac plexus block is effective at treating intra-abdominal pain, such as in inoperable pancreatic cancer, resulting in pain relief and reduced narcotic usage. Both US-guided superior hypogastric plexus neurolysis and ganglion impar neurolysis can be used for pelvic cancer pain, such as cases of cervical or rectal cancer, and can result in significant pain relief.37

Musculoskeletal disease is one of the most common causes of pain in older adults, being very prevalent in the palliative care population. There are several reports of patients whose
most bothersome source of pain was secondary to musculoskeletal disease and not due to their primary terminal diagnosis. Adequately treating musculoskeletal pain at the end of life, is an opportunity to improve quality of life in these patients. US is becoming an increasingly important tool in the diagnosis of a wide variety of musculoskeletal disorders and to accurately guide corticosteroid injections.\[37\]

Botulinum toxin injections

Sialorrhea is a common and bothersome symptom of various neurological disorders, including terminal disease such as amyotrophic lateral sclerosis and severe brain injury or stroke. Although not specifically studied in the palliative care population, SU guided botulinum toxin injections to the parotid and submandibular glands have been described as a safe and effective treatment for sialorrhea, with significantly higher rates of saliva reduction than injections performed blindly.\[37\]

Vascular access

Periprocedural pain during vascular access is frequent and repeated attempts can lead to hyperalgesia.\[6\] US guidance increases the likelihood of successful peripheral cannulation in difficult access patients.\[39\] In patients who need venous access, US-guided peripherally inserted Central Venous Catheters can be considered. A study investigating the impact of this technique in a palliative care population showed low levels of stress and pain at the time of placement and low incidence of complications both in the hospital and the home settings.\[39\]

3. LIMITATIONS

On-site US equipment within the specialist palliative care setting is still very unusual, with only a very small number of units having this facility.\[19\] The literature examining the use of imaging in the palliative setting is limited.\[6\] Specific descriptions of POCUS in palliative care are limited to case reports and case series, and there is a lack of focused prospective research in this patient population. More patient-orientated outcomes like peri-interventional pain, requirement for transfer of location, readmission, or improvement of symptoms are aspects that should also be examined prospectively.\[6\]

Integrating POCUS is expected to be formidable but despite these advances, internal medicine POCUS curriculum development and implementation continues to be a challenge globally for many residency training programs. Barriers include lack of access to equipment, lack of established curricula, limited availability of educational time, and lack of trained faculty. Introducing a novel technology such as POCUS into clinical practice requires resources and new infrastructure and relies nowadays on a limited supply of professionals with expertise.\[11\] Specific training programs for US in palliative care are not currently available, although internationally single "Palliative POCUS" courses have been run.\[6\] Given the ubiquity of POCUS, gaining mastery of POCUS must extend beyond image acquisition and interpretation, rather incorporating the appropriate selection of patients, consideration of pre-test probabilities, the spectrum of disease, and the expected accuracy of the exam.\[40\]

Conclusion

The decision to use imaging in inpatient palliative care requires a pragmatic appraisal of the benefits of potential enhanced clinical knowledge against futility and the potential for harm. We suggest that POCUS can be of substantial utility in the care for patients with acute palliative care needs, addressing common and easily recognizable complications, with no need for exam related burden such as patient transfer or contrast administration. It has the potential to optimize inpatient length of stay or even avoid unnecessary transfers to hospital, contributing for patient comfort, effective symptomatic relief, reduce complications from specific palliative interventions and reduce costs. POCUS use will likely continue to grow and ultimately become a cornerstone of bedside evaluation. The universal use of US in health care facilities contributes to the continuous lowering of equipment prices, with easier acquisition of US portable equipment by health care facilities, with major potential in the management of palliative care patients. ■

Declaração de Contribuição / Contributorship Statement:

Responsabilidades Éticas

Conflitos de Interesse: Os autores declararam a inexistência de conflitos de interesse na realização do presente trabalho.

Fontes de Financiamento: Não existiram fontes externas de financiamento para a realização deste artigo.

Confidencialidade dos Dados: Os autores declararam ter seguido os protocolos da sua instituição acerca da publicação dos dados de doentes, Proteção de Pessoas e Animais: Os autores declararam que os procedimentos seguidos estavam de acordo com os regulamentos estabelecidos pelos responsáveis da Comissão de Investigação Clínica e Ética e de acordo com a Declaração de Helsinki da Associação Médica Mundial. Proveniência e Revisão por Pares: Não comissionado; revisão externa por pares.

Ethical Disclosures

Conflicts of interest: The authors have no conflicts of interest to declare.

Financing Support: This work has not received any contribution, grant or scholarship

Confidentiality of Data: The authors declare that they have followed the protocols of their work center on the publication of data from patients.

Protection of Human and Animal Subjects: The authors declare that the procedures followed were in accordance with the regulations of the relevant clinical research ethics committee and with those of the Code of

