SciELO - Scientific Electronic Library Online

 
 número9Utilização de Algoritmos de Processamento e Análise de Imagem na Avaliação do Dano em Placas CompósitasA System for Automatic Construction of Exam Timetable Using Genetic Algorithms índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Tékhne - Revista de Estudos Politécnicos

versão impressa ISSN 1645-9911

Tékhne  n.9 Barcelos jun. 2008

 

Principles of Deterministic Spatial Interpolators

João Negreiros[1], Marco Painho1, Fernando Aguilar[2]

c8057@isegi.unl.pt, painho@isegi.unl.pt, faguilar@aul.es

(recebido em 8 de Abril de 2008; aceite em 2 de Maio de 2008)

 

 

Resumo: A interpolação espacial é o processo de prever o valor de atributos em locais não amostrados a partir de medições realizadas em localizações diversas de uma determinada região [Burrough, McDonnell, 1998]. Rever e comparar os interpoladores determinísticos espaciais usados em Sistemas de Informação Geográficos (GIS) como a B-Spline, Fourier, TIN, IDW e as superfícies de tendência polinomiais é o objectivo principal deste artigo curto. Alguns aspectos técnicos computacionais são igualmente examinados.

Palavras-chave: Interpolação espacial, TIN, Superfícies de tendência global, Fourier, B-Spline.

 

 

Abstract: Spatial interpolation is the process of predicting the value of attributes at unsampling sites from measurements made at point locations within the same area or region [Burrough, McDonnell, 1998]. To review and to compare spatial deterministic interpolators used in Geographical Information Systems (GIS) such as B-Splines, Fourier, TIN, IDW and polynomial trend surfaces is the main goal of this short article. Some computational technical aspects are examined, as well.

Keywords: Spatial interpolation, TIN, Global polynomial trend, Fourier, B-Splines.

 

 

Texto completo disponível apenas em PDF.

Full text only available in PDF format.

 

 

Bibliography

Anselin, L. & O'Loughlin, J. (1992). Geography of International Conflict and Cooperation: Spatial Dependence and Regional Context in Africa. In Ficher (Ed.), The New Geopolitics (pp. 39-75). New York: Gordon and Breach Science Publication.        [ Links ]

Anselin, L. (Ed.). (1992). SpaceStat Tutorial. A Workbook for Using SpaceStat in the Analysis of Spatial Data. Morgantown: Regional Research Institute, West Virginia University.  

Billingsley, F.C. (1983). Data Processing and Reprocessing. Manual of Remote Sensing, Volume 1, 719-722.

Burrough, P. & McDonnell, R. (Ed.). (1998). Principles of Geographical Information Systems. Oxford University Press.

Clark, I. & Harper, W. (Ed.). (2000). Practical Geostatistics. Ecosse North America.

ESRI (Ed.). (2001). Using ArcGIS Geostatistical Analyst. ESRI Press.

Goovaerts, P. (1999). Using Elevation to Aid the Geostatistical Mapping. Catena Research, 34 (3), 227-242. Retrieved April 9, 2008, from http://www.sciencedirect.com/science.

Goovaerts, P. (2002). Geostatistical Analysis of Environmental Data. Lisboa, Portugal: ISEGI-UNL.

Griffith, D. & Layne, L. (Ed.). (1999). A Casebook for Spatial Statistical Data Analysis: A Compilation of Analyses of Different Thematic Data Sets. Oxford University Press.

Isaaks, E. & Srivastava, R. (Ed.). (1989). An Introduction to Applied Geostatistics. Oxford University Press.

Kravchenko, A. & Bullock, D. (1999). A Comparative Study of Interpolation Methods for Mapping Soil Properties. Agronomy Journal, 91, 393-400.

Levine, N. (1997). Spatial Statistics and GIS Software Tools to Quantify Spatial Patterns. APA Journal, 34, 456-471.

Matos, J. (Ed.). (2001). Fundamentos de Informação Geográfica. FCA-Lidel.

Nalder, I. & Wein, R. (1998). Spatial Interpolation of Climatic Normals: Test of a New Method in the Canadian Boreal Forest. Agriculture and Forest Meteorology, 92, 211-225.

Sarkozy, F. (1999). GIS Function Interpolation. Periodical Civil Engineer, 23, 63-86.

Shamsi, S. (2008). GIS Applications in Floodplain Management. Retrieved April 9, 2008, from http://gis.esri.com/library/userconf/proc02/pap0490/p0490.htm.

Walter, N. (Ed.). (2001). Spatial Interpolation. University of Calgary Press.

Wang, X. & Zhang, Z. (1999). A Comparison of Conditional Simulation, Kriging and Trend Surface Analysis for Soil Heavy Metal Pollution Pattern Analysis. Journal of Environmental Sciences and Health, 34, 73-89.

Yao, T. (1999). Nonparametric Cross-covariance Modeling as Exemplified by Soil Heavy Metal Concentrations from The Swiss Jura. Geoderma, 88, 13-38.

Zimmerman, D., Pavlik, C., Ruggles, A. & Armstrong, M. (1999). An Experimental Comparison of Ordinary and UK and Inverse Distance Weighting. Mathematical Geology, 31, 370-395.

 

[1] ISEGI-UNL, Campus de Campolide, Lisboa, Portugal; http://www.isegi.unl.pt

[2] Universidad de Almeria, La Canãda de San Urbano, Almeria, Spain; http://www.ual.es